
10/23/2024 - OOPSLA

JMVX
Fast Multi-threaded Multi-version Execution and 
Record Replay for Managed Languages

David Schwartz, Ankith Kowshik, and Luís Pina
University of Illinois Chicago

10/23/2024 - OOPSLA

JMVX
Fast Multi-threaded Multi-version Execution and 
Record Replay for Managed Languages

David Schwartz, Ankith Kowshik, and Luís Pina
University of Illinois Chicago

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Record Replay (RR)

3

1: public static void main(String[] args) throws Exception{
2: FileInputStream configFile = new FileInputStream("config.conf");
3: doWork(configFile);
4: }
5:

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

4

UserDeveloper

1: public static void main(String[] args) throws Exception{
2: FileInputStream configFile = new FileInputStream("config.conf");
3: doWork(configFile);
4: }
5:

Record Replay (RR)

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

5

UserDeveloper
User doesn’t have a config file, leads to:

Exception … java.io.FileNotFoundException: …

File [poorly documented] report to the developer

1: public static void main(String[] args) throws Exception{
2: FileInputStream configFile = new FileInputStream("config.conf");
3: doWork(configFile);
4: }
5:

Record Replay (RR)

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

6

UserDeveloper
User doesn’t have a config file, leads to:

Exception … java.io.FileNotFoundException: …

File [poorly documented] report to the developer

1: public static void main(String[] args) throws Exception{
2: FileInputStream configFile = new FileInputStream("config.conf");
3: doWork(configFile);
4: }
5:

Record Replay (RR)

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

7

UserDeveloper
User doesn’t have a config file, leads to:

Exception … java.io.FileNotFoundException: …

File [poorly documented] report to the developer

1: public static void main(String[] args) throws Exception{
2: FileInputStream configFile = new FileInputStream("config.conf");
3: doWork(configFile);
4: }
5:

Record Replay (RR)

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

8

UserDeveloper
User doesn’t have a config file, leads to:

Exception … java.io.FileNotFoundException: …

File [poorly documented] report to the developer
Developer has a config file.

Program runs fine!

1: public static void main(String[] args) throws Exception{
2: FileInputStream configFile = new FileInputStream("config.conf");
3: doWork(configFile);
4: }
5:

Record Replay (RR)

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

9

UserDeveloper
User doesn’t have a config file, leads to:

Exception … java.io.FileNotFoundException: …

File [poorly documented] report to the developer
Developer has a config file.

Program runs fine!

Enter a cycle of developer
probing user for more

information on the crash

1: public static void main(String[] args) throws Exception{
2: FileInputStream configFile = new FileInputStream("config.conf");
3: doWork(configFile);
4: }
5:

Record Replay (RR)

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

10

OS

Application Deterministic API

Nondeterministic
API

Language API

Existing
MVX

Virtual Machine

VM
Runtime

Application
Deterministic API

Language API

Virtual Machine

VM
Runtime

Nondeterministic
API

(instrumented)

JMVX

Nondeterministic
call sites

(instrumented)
Existing

RR
Normally, the program interacts directly with the OS.

Developer is unaware of the computing environment.

1: public static void main(String[] args) throws Exception{
2: FileInputStream configFile = new FileInputStream("config.conf");
3: doWork(configFile);
4: }
5:

Program

Record Replay (RR)

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Record Replay (RR)

11

1: public static void main(String[] args) throws Exception{
2: FileInputStream configFile = new FileInputStream("config.conf");
3: doWork(configFile);
4: }
5:

With Record Replay (RR), a recording of
nondeterministic interactions with OS is made. OS

Application Deterministic API

Nondeterministic
API

Language API

Existing
MVX

Virtual Machine

VM
Runtime

Application
Deterministic API

Language API

Virtual Machine

VM
Runtime

Nondeterministic
API

(instrumented)

JMVX

Nondeterministic
call sites

(instrumented)
Existing

RRProgram

Recording

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

12

1: public static void main(String[] args) throws Exception{
2: FileInputStream configFile = new FileInputStream("config.conf");
3: doWork(configFile);
4: }
5:

With Record Replay (RR), a recording of
nondeterministic interactions with OS is made.

Recording can be given to a developer and replayed.

This imposes the same interactions, allowing the bug
to be easily reproduced.

No need to ask the user
for more info

OS

Application Deterministic API

Nondeterministic
API

Language API

Existing
MVX

Virtual Machine

VM
Runtime

Application
Deterministic API

Language API

Virtual Machine

VM
Runtime

Nondeterministic
API

(instrumented)

JMVX

Nondeterministic
call sites

(instrumented)
Existing

RRProgram

Recording

Record Replay (RR)

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Motivation

13

Mode

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

0.00

1.00

2.00

3.00

4.00

5.00

Record Replay

JMVX rr

Average Overhead

Data is normalized to the vanilla (uninstrumented) benchmarks

9/12 9/12

Text inside of bar:

Benchmarks passed / tested

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Motivation

14

Mode

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

0.00

1.00

2.00

3.00

4.00

5.00

Record Replay

JMVX rr

Average Overhead

Data is normalized to the vanilla (uninstrumented) benchmarks

9/12 9/12

12/12 12/12

Text inside of bar:

Benchmarks passed / tested

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Motivation

15

Mode

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

0.00

1.00

2.00

3.00

4.00

5.00

Record Replay

JMVX rr

Average Overhead

Data is normalized to the vanilla (uninstrumented) benchmarks

Achieved by:
1) Multi-threaded record replay
2) Tolerable benign divergences

12/12 12/12

9/12 9/12

Text inside of bar:

Benchmarks passed / tested

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

RR is Offline Multi-version Execution (MVX)

16

RecordingRRProgram Recording RR Program

Recorder Replayer

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

17

RRProgram RR Program

Recorder Replayer

Shared Memory Buffer

Log to a shared buffer rather than to disk

RR is Offline Multi-version Execution (MVX)

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

18

RRProgram RR Program

Recorder Replayer

Shared Memory Buffer

Coordinator

Log to a shared buffer rather than to disk

Use a coordinator process to establish communication channels and share resources

RR is Offline Multi-version Execution (MVX)

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

19

MVXProgram MVX Program

Leader Follower

Shared Memory Buffer

Coordinator

Log to a shared buffer rather than to disk

Use a coordinator process to establish communication channels and share resources

RR is Offline Multi-version Execution (MVX)

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Multi-version Execution

Coordinator
and/or buffer

Leader

20

Follower

System calls

Follower is a different variant

E.g., a newer version of the software

OS

Run extra instances of our software

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Multi-version Execution

Coordinator
and/or buffer

Leader

21

Follower

System calls

Follower is a different variant

E.g., a newer version of the software

OS

Shares the results of system calls

Run extra instances of our software

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Multi-version Execution

EncountersLeader

22

Follower

System calls

Follower is a different variant

E.g., a newer version of the software

OS

Shares the results of system calls

Run extra instances of our software

Coordinator
and/or buffer

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Multi-version Execution

23

CrashesEncounters

Different variants can survive crashes

Leader

Follower

System calls

Follower is a different variant

E.g., a newer version of the software

OS

Shares the results of system calls

Run extra instances of our software

Coordinator
and/or buffer

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

RR/MVX is Difficult for VM Based Languages

24

OS

Application Deterministic API

Nondeterministic
API

Language API

Existing
MVX

Virtual Machine

VM
Runtime

Application
Deterministic API

Language API

Virtual Machine

VM
Runtime

Nondeterministic
API

(instrumented)

JMVX

Nondeterministic
call sites

(instrumented)
Existing
RR/MVX

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

• VM management leads to divergent behavior

25

OS

Application Deterministic API

Nondeterministic
API

Language API

Existing
MVX

Virtual Machine

VM
Runtime

Application
Deterministic API

Language API

Virtual Machine

VM
Runtime

Nondeterministic
API

(instrumented)

JMVX

Nondeterministic
call sites

(instrumented)

GC JIT Class
Loading

RR/MVX is Difficult for VM Based Languages

Existing
RR/MVX

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

• VM management leads to divergent behavior

26

OS

Application Deterministic API

Nondeterministic
API

Language API

Existing
MVX

Virtual Machine

VM
Runtime

Application
Deterministic API

Language API

Virtual Machine

VM
Runtime

Nondeterministic
API

(instrumented)

JMVX

Nondeterministic
call sites

(instrumented)

GC JIT Class
Loading

Much simpler if we could bypass system
calls pertaining to VM management

RR/MVX is Difficult for VM Based Languages

Existing
RR/MVX

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

• Use a higher level of abstraction to tolerate* VM management divergences

27

OS

Application Deterministic API

Nondeterministic
API

Language API

Existing
MVX

Virtual Machine

VM
Runtime

Application
Deterministic API

Language API

Virtual Machine

VM
Runtime

Nondeterministic
API

(instrumented)

JMVX

Nondeterministic
call sites

(instrumented)

*Currently we can tolerate benign
divergences from class loading and

the JIT. GC can sometimes be a
problem, see the paper for more

details!

Much simpler if we could bypass system
calls pertaining to VM management

RR/MVX is Difficult for VM Based Languages

Existing
RR/MVX

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Dynamic Tracing

28

Nondeterministic API

Program
and VM
runtime

System

Virtual Machine

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Dynamic Tracing

29

Instrumented bytecode to add hooks to natives

Nondeterministic API

Program
and VM
runtime

System

Virtual Machine

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Dynamic Tracing

30

Instrumented bytecode to add hooks to natives

Nondeterministic API

Program
and VM
runtime

System

Virtual Machine

Clear Flag

// Global Flag

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Dynamic Tracing

31

Instrumented bytecode to add hooks to natives

Nondeterministic API

Program
and VM
runtime

System

Virtual Machine

Clear Flag Log if
flagged

// Global Flag

// else nop

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Dynamic Tracing

32

Instrumented bytecode to add hooks to natives

Nondeterministic API

Program
and VM
runtime

System

Virtual Machine

Clear Flag Log if
flagged

strace

// Global Flag

// else nop

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Dynamic Tracing

33

Instrumented bytecode to add hooks to natives

Nondeterministic API

Program
and VM
runtime

System

Virtual Machine

Clear Flag Log if
flagged

strace

USR2

// Global Flag

// else nop

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Dynamic Tracing

34

Instrumented bytecode to add hooks to natives

Signal handler sets flag

Nondeterministic API

Program
and VM
runtime

System

Virtual Machine

Clear Flag Log if
flaggedSet Flag

strace

USR2

// else nop

// Global Flag

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Dynamic Tracing Results

35

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Bytecode Instrumentation

36

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Bytecode Instrumentation

37

Rename the method

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Bytecode Instrumentation

38

Rename the method

Add “new” method

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Bytecode Instrumentation

39

Rename the method

Add “new” method

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Bytecode Instrumentation

40

Rename the method

Add “new” method

01: Recorder.read(SocketInputStream s){
02: int r = s.$JMVX$read();
03: log.write(new SocketReadI(r));

04: return r;

05: }
06:

07: Replayer.read(SocketInputStream s){
08: Object o = log.read();

09: assert(o instanceof SocketReadI);

10: return o.i;

11: }
12:

13: class SocketReadI { int i; }
14:

Recorder Strategy

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Bytecode Instrumentation

41

Rename the method

Add “new” method

01: Recorder.read(SocketInputStream s){
02: int r = s.$JMVX$read();
03: log.write(new SocketReadI(r));

04: return r;

05: }
06:

07: Replayer.read(SocketInputStream s){
08: Object o = log.read();

09: assert(o instanceof SocketReadI);

10: return o.i;

11: }
12:

13: class SocketReadI { int i; }
14:

Recorder Strategy

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Bytecode Instrumentation

42

Rename the method

Add “new” method

01: Recorder.read(SocketInputStream s){
02: int r = s.$JMVX$read();
03: log.write(new SocketReadI(r));

04: return r;

05: }
06:

07: Replayer.read(SocketInputStream s){
08: Object o = log.read();

09: assert(o instanceof SocketReadI);

10: return o.i;

11: }
12:

13: class SocketReadI { int i; }
14:

Recorder Strategy

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Bytecode Instrumentation

43

Rename the method

Add “new” method

01: Recorder.read(SocketInputStream s){
02: int r = s.$JMVX$read();
03: log.write(new SocketReadI(r));

04: return r;

05: }
06:

07: Replayer.read(SocketInputStream s){
08: Object o = log.read();

09: assert(o instanceof SocketReadI);

10: return o.i;

11: }
12:

13: class SocketReadI { int i; }
14:

Recorder Strategy

01: Recorder.read(SocketInputStream s){
02: int r = s.$JMVX$read();
03: log.write(new SocketReadI(r));

04: return r;

05: }
06:

07: Replayer.read(SocketInputStream s){
08: Object o = log.read();

09: assert(o instanceof SocketReadI);

10: return o.i;

11: }
12:

13: class SocketReadI { int i; }
14:

Replayer Strategy

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Bytecode Instrumentation

44

Rename the method

Add “new” method

01: Recorder.read(SocketInputStream s){
02: int r = s.$JMVX$read();
03: log.write(new SocketReadI(r));

04: return r;

05: }
06:

07: Replayer.read(SocketInputStream s){
08: Object o = log.read();

09: assert(o instanceof SocketReadI);

10: return o.i;

11: }
12:

13: class SocketReadI { int i; }
14:

Recorder Strategy

01: Recorder.read(SocketInputStream s){
02: int r = s.$JMVX$read();
03: log.write(new SocketReadI(r));

04: return r;

05: }
06:

07: Replayer.read(SocketInputStream s){
08: Object o = log.read();

09: assert(o instanceof SocketReadI);

10: return o.i;

11: }
12:

13: class SocketReadI { int i; }
14:

Replayer Strategy

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Bytecode Instrumentation

45

Rename the method

Add “new” method

01: Recorder.read(SocketInputStream s){
02: int r = s.$JMVX$read();
03: log.write(new SocketReadI(r));

04: return r;

05: }
06:

07: Replayer.read(SocketInputStream s){
08: Object o = log.read();

09: assert(o instanceof SocketReadI);

10: return o.i;

11: }
12:

13: class SocketReadI { int i; }
14:

Recorder Strategy

01: Recorder.read(SocketInputStream s){
02: int r = s.$JMVX$read();
03: log.write(new SocketReadI(r));

04: return r;

05: }
06:

07: Replayer.read(SocketInputStream s){
08: Object o = log.read();

09: assert(o instanceof SocketReadI);

10: return o.i;

11: }
12:

13: class SocketReadI { int i; }
14:

Replayer Strategy

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Dynamic Tracing Results

46

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Dynamic Tracing Results

47

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Dynamic Tracing Results

48

java.lang ClassLoader loadClass

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Dynamic Tracing Results

49

Order classes are loaded in is nondeterministic

java.lang ClassLoader loadClass

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Dynamic Tracing Results

50

java.lang

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Dynamic Tracing Results

51

java.lang
Required for multi-threaded

program support.

A major reason why we
perform better than rr.

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Dynamic Tracing Results

52

Manually identified

java.lang
Required for multi-threaded

program support.

A major reason why we
perform better than rr.

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Dynamic Tracing Results

53

Manually identified

Automatically detected and instrumented

java.lang
Required for multi-threaded

program support.

A major reason why we
perform better than rr.

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Multi-threading
• Lamport clock provides total order of monitor entry (locking an object)

54

Thread 1

Thread 2
3 4

21

(b) Other scheduling

3 4

1

[0,0] [1,0] [1,1] [2,1] [2,2]

(a) Leader/Recorder

1 2

3 43 4

[0,0]

2
[1,1]

[1,0]

[0,0] [1,0]

[1,1]

[1,1]

[2,2]

[1,1]

[2,1]

[2,1]

[2,2]

[2,2]

(c) Follower/ReplayerRecorder
[program’s clock]

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Multi-threading
• Lamport clock provides total order of monitor entry (locking an object)

55

Thread 1

Thread 2
3 4

21

(b) Other scheduling

3 4

1

[0,0] [1,0] [1,1] [2,1] [2,2]

(a) Leader/Recorder

1 2

3 43 4

[0,0]

2
[1,1]

[1,0]

[0,0] [1,0]

[1,1]

[1,1]

[2,2]

[1,1]

[2,1]

[2,1]

[2,2]

[2,2]

(c) Follower/ReplayerRecorder Another schedule
[program’s clock]

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Multi-threading
• Lamport clock provides total order of monitor entry (locking an object)

56

Thread 1

Thread 2
3 4

21

(b) Other scheduling

3 4

1

[0,0] [1,0] [1,1] [2,1] [2,2]

(a) Leader/Recorder

1 2

3 43 4

[0,0]

2
[1,1]

[1,0]

[0,0] [1,0]

[1,1]

[1,1]

[2,2]

[1,1]

[2,1]

[2,1]

[2,2]

[2,2]

(c) Follower/ReplayerRecorder Another schedule Replayer
[program’s clock]

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Multi-threading
• Lamport clock provides total order of monitor entry (locking an object)

57

Thread 1

Thread 2
3 4

21

(b) Other scheduling

3 4

1

[0,0] [1,0] [1,1] [2,1] [2,2]

(a) Leader/Recorder

1 2

3 43 4

[0,0]

2
[1,1]

[1,0]

[0,0] [1,0]

[1,1]

[1,1]

[2,2]

[1,1]

[2,1]

[2,1]

[2,2]

[2,2]

(c) Follower/ReplayerRecorder Another schedule Replayer
[program’s clock]

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

• Lamport clock provides total order of monitor entry (locking an object)

Multi-threading

58

Thread 1

Thread 2
3 4

21

(b) Other scheduling

3 4

1

[0,0] [1,0] [1,1] [2,1] [2,2]

(a) Leader/Recorder

1 2

3 43 4

[0,0]

2
[1,1]

[1,0]

[0,0] [1,0]

[1,1]

[1,1]

[2,2]

[1,1]

[2,1]

[2,1]

[2,2]

[2,2]

(c) Follower/ReplayerRecorder Another schedule Replayer
[program’s clock]

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Multi-threading
• Lamport clock provides total order of monitor entry (locking an object)

59

Thread 1

Thread 2
3 4

21

(b) Other scheduling

3 4

1

[0,0] [1,0] [1,1] [2,1] [2,2]

(a) Leader/Recorder

1 2

3 43 4

[0,0]

2
[1,1]

[1,0]

[0,0] [1,0]

[1,1]

[1,1]

[2,2]

[1,1]

[2,1]

[2,1]

[2,2]

[2,2]

(c) Follower/ReplayerRecorder Another schedule Replayer
[program’s clock]

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Multi-threading Instrumentation

60

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Multi-threading Instrumentation

61

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Multi-threading Instrumentation

62

$JMVX$m() {

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Multi-threading Instrumentation

63

$JMVX$m() {

Add a new method

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Multi-threading Instrumentation

64

$JMVX$m() {

Add a new method

Implements the synchronized
logic through JMVX while
logging or enforcing the

ordering of the vector clock

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Ring Buffer
• Fast shared memory queue

• Shared off heap byte buffer

• Made with mmap

• Managed with Unsafe

• Java class that allows direct memory access

65

Leader FollowerCoordinator

Application
Thread 1

JVM

Application
Thread 2

Application
Thread 1

JVM

Application
Thread 2

Shared Memory Buffer

Shared Memory Buffer

Recorder Replayer

Application
Thread 1

JVM

Application
Thread 2

Application
Thread 1

JVM

Application
Thread 2

Log

Log

Log

Log

Operating System

Runtime
management Application

Operating System

Runtime
management Application

Operating System

Runtime
management Application

Operating System

Runtime
management Application

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Ring Buffer
• Fast shared memory queue

• Shared off heap byte buffer

• Made with mmap

• Managed with Unsafe

• Java class that allows direct memory access

66

Leader FollowerCoordinator

Application
Thread 1

JVM

Application
Thread 2

Application
Thread 1

JVM

Application
Thread 2

Shared Memory Buffer

Shared Memory Buffer

Recorder Replayer

Application
Thread 1

JVM

Application
Thread 2

Application
Thread 1

JVM

Application
Thread 2

Log

Log

Log

Log

Operating System

Runtime
management Application

Operating System

Runtime
management Application

Operating System

Runtime
management Application

Operating System

Runtime
management Application

No locks used in this design,
so it’s very fast!

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Ring Buffer
• Fast shared memory queue

• Shared off heap byte buffer

• Made with mmap

• Managed with Unsafe

• Java class that allows direct memory access

67

Leader FollowerCoordinator

Application
Thread 1

JVM

Application
Thread 2

Application
Thread 1

JVM

Application
Thread 2

Shared Memory Buffer

Shared Memory Buffer

Recorder Replayer

Application
Thread 1

JVM

Application
Thread 2

Application
Thread 1

JVM

Application
Thread 2

Log

Log

Log

Log

Operating System

Runtime
management Application

Operating System

Runtime
management Application

Operating System

Runtime
management Application

Operating System

Runtime
management Application

No locks used in this design,
so it’s very fast!

More details in the paper!

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Divergence Handling

68

===== DaCapo unknown pmd starting =====
PMD checked 601 files.
===== DaCapo unknown pmd PASSED in 10558 msec =====

===== DaCapo unknown pmd starting =====
PMD checked 601 files.
===== DaCapo unknown pmd PASSED in 9518 msec =====

Leader Output Follower Output

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Divergence Handling

69

===== DaCapo unknown pmd starting =====
PMD checked 601 files.
===== DaCapo unknown pmd PASSED in 10558 msec =====

===== DaCapo unknown pmd starting =====
PMD checked 601 files.
===== DaCapo unknown pmd PASSED in 9518 msec =====

DIVERGENCE

Leader Output Follower Output

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

===== DaCapo unknown pmd starting =====
PMD checked 601 files.
===== DaCapo unknown pmd PASSED in 10558 msec =====

===== DaCapo unknown pmd starting =====
PMD checked 601 files.
===== DaCapo unknown pmd PASSED in 9518 msec =====

Divergence Handling

70

Leader Output Follower Output

DIVERGENCE

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Divergence Handling

71

===== DaCapo unknown pmd starting =====
PMD checked 601 files.
===== DaCapo unknown pmd PASSED in 9518 msec =====

===== DaCapo unknown pmd starting =====
PMD checked 601 files.
===== DaCapo unknown pmd PASSED in 10558 msec and divergence handled =====

Leader Output Follower Output

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Evaluation: Research Questions
• What’s the bytecode instrumentation overhead?

• What’s the RR overhead?

• Compare with rr and Chronicler

• What’s the MVX overhead?

• How does JMVX scale?

• With respect to number of threads and the size of the ring buffer

• (Mostly) Used programs from the DaCapo benchmark suite

72

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Evaluation (Note): Sync Vs Nosync
• Full/partial instrumentation respectively (sync vs nosync)

73

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Evaluation (Note): Sync Vs Nosync
• Full/partial instrumentation respectively (sync vs nosync)

74

Nosync/partial instrumentation
excludes classes that ordered multi-

threaded events

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Evaluation (Note): Sync Vs Nosync
• Full/partial instrumentation respectively (sync vs nosync)

75

Nosync/partial instrumentation
excludes classes that ordered multi-

threaded events

Modes exist to have a fair
comparison with other systems

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Evaluation: Instrumentation
• Pass through strategy used to measure overhead

• Measures cost of diverting to JMVX

• Without multi-threading instrumentation: 2% overhead

• With multi-threading instrumentation: 5% overhead

• Vector clock is not in use

76

1: void Passthrough.monitorEnter(Object o}
2: //grab lock
3: Unsafe.monitorenter(o);

4: }
5:

6: int Passthrough.read(SocketInputStream s){
7: //no logging
8: return s.$JMVX$read();
9: }
10:

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Evaluation: Instrumentation
• Pass through strategy used to measure overhead

• Measures cost of diverting to JMVX

• Nosync instrumentation: 2% overhead

• Sync instrumentation: 5% overhead

77

1: void Passthrough.monitorEnter(Object o}
2: //grab lock
3: Unsafe.monitorenter(o);

4: }
5:

6: int Passthrough.read(SocketInputStream s){
7: //no logging
8: return s.$JMVX$read();
9: }
10:

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Evaluation: RR (vs rr)
• Record: JMVX 1.25x overhead | rr 4.33x overhead

• Replay: JMVX 1.73x overhead | rr 4.70x overhead

78

Benchmarks

N
or

m
al

iz
ed

 E
xe

cu
tio

n
O

ve
rh

ea
d

0

1

2

3

4

5

6

7

8

9

av
ror

a
ba

tik fop h2

h2
 se

rve
r

jm
e

jyt
ho

n

lui
nd

ex

lus
ea

rch pm
d

su
nfl

ow
xa

lan

av
era

ge

JMVX (Sync) rr

Replay Overhead

Benchmark

N
or

m
al

iz
ed

 E
xe

cu
tio

n
O

ve
rh

ea
d

0

1

2

3

4

5

6

7

8

9

10

11

av
ror

a
ba

tik fop h2

h2
 se

rve
r

jm
e

jyt
ho

n

lui
nd

ex

lus
ea

rch pm
d

su
nfl

ow
xa

lan

av
era

ge

JMVX (Sync) rr

Recording Overhead

Data is normalized to the vanilla (uninstrumented) benchmark

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Evaluation: Recording Size

79

Benchmark

C
om

pr
es

se
d

R
ec

or
di

ng
 S

iz
e

(M
B

)

0

50

100

150

200

250

av
ror

a
ba

tik fop h2

h2
 se

rve
r

jm
e

jyt
ho

n

lui
nd

ex

lus
ea

rch pm
d

su
nfl

ow
xa

lan

JMVX (Sync) rr

Compressed Recording Size

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Evaluation: RR (vs Chronicler)
• Record: JMVX 1.08x overhead | Chronicler 1.14x overhead

• Replay: JMVX 1.13x overhead | Chronicler NA

80
Benchmark

N
or

m
al

iz
ed

 E
xe

cu
tio

n
O

ve
rh

ea
d

0.00

0.25

0.50

0.75

1.00

1.25

1.50

av
ror

a
ba

tik fop h2

h2
 se

rve
r

jm
e

jyt
ho

n

lui
nd

ex

lus
ea

rch pm
d

su
nfl

ow
xa

lan

av
era

ge

JMVX (Nosync) Chronicler

Replay Overhead

Benchmark

N
or

m
al

iz
ed

 E
xe

cu
tio

n
O

ve
rh

ea
d

0.00

0.25

0.50

0.75

1.00

1.25

1.50

av
ror

a
ba

tik fop h2

h2
 se

rve
r

jm
e

jyt
ho

n

lui
nd

ex

lus
ea

rch pm
d

su
nfl

ow
xa

lan

av
era

ge

JMVX (Nosync) Chronicler

Recording Overhead

Data is normalized to the vanilla (uninstrumented) benchmark

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Evaluation: RR (vs Chronicler)
• Record: JMVX 1.08x overhead | Chronicler 1.14x overhead

• Replay: JMVX 1.13x overhead | Chronicler NA

81
Benchmark

N
or

m
al

iz
ed

 E
xe

cu
tio

n
O

ve
rh

ea
d

0.00

0.25

0.50

0.75

1.00

1.25

1.50

av
ror

a
ba

tik fop h2

h2
 se

rve
r

jm
e

jyt
ho

n

lui
nd

ex

lus
ea

rch pm
d

su
nfl

ow
xa

lan

av
era

ge

JMVX (Nosync) Chronicler

Replay Overhead

Benchmark

N
or

m
al

iz
ed

 E
xe

cu
tio

n
O

ve
rh

ea
d

0.00

0.25

0.50

0.75

1.00

1.25

1.50

av
ror

a
ba

tik fop h2

h2
 se

rve
r

jm
e

jyt
ho

n

lui
nd

ex

lus
ea

rch pm
d

su
nfl

ow
xa

lan

av
era

ge

JMVX (Nosync) Chronicler

Recording Overhead

Chronicler was not tested on these

Data is normalized to the vanilla (uninstrumented) benchmark

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Evaluation: RR (vs Chronicler)
• Record: JMVX 1.08x overhead | Chronicler 1.14x overhead

• Replay: JMVX 1.13x overhead | Chronicler NA

82
Benchmark

N
or

m
al

iz
ed

 E
xe

cu
tio

n
O

ve
rh

ea
d

0.00

0.25

0.50

0.75

1.00

1.25

1.50

av
ror

a
ba

tik fop h2

h2
 se

rve
r

jm
e

jyt
ho

n

lui
nd

ex

lus
ea

rch pm
d

su
nfl

ow
xa

lan

av
era

ge

JMVX (Nosync) Chronicler

Replay Overhead

Benchmark

N
or

m
al

iz
ed

 E
xe

cu
tio

n
O

ve
rh

ea
d

0.00

0.25

0.50

0.75

1.00

1.25

1.50

av
ror

a
ba

tik fop h2

h2
 se

rve
r

jm
e

jyt
ho

n

lui
nd

ex

lus
ea

rch pm
d

su
nfl

ow
xa

lan

av
era

ge

JMVX (Nosync) Chronicler

Recording Overhead

Chronicler was not tested on these

Chronicler does not
provide replay runtime

data in the paper

Data is normalized to the vanilla (uninstrumented) benchmark

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Evaluation: MVX
• Leader: 1.47x overhead

• Follower: 1.80x overhead

83Data is normalized to the vanilla (uninstrumented) benchmark

Sync mode

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Evaluation: MVX
• Leader: 1.47x overhead

• Follower: 1.80x overhead

84

Sync mode

Data is normalized to the vanilla (uninstrumented) benchmark

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

• Leader: 1.47x overhead

• Follower: 1.80x overhead

Evaluation: MVX

85

Many short critical sections.

Vector clock is biased for the Leader.

Delayed events add up.

Data is normalized to the vanilla (uninstrumented) benchmark

Sync mode

Thread 1

Thread 2
3 4

21

(b) Other scheduling

3 4

1

[0,0] [1,0] [1,1] [2,1] [2,2]

(a) Leader/Recorder

1 2

3 43 4

[0,0]

2
[1,1]

[1,0]

[0,0] [1,0]

[1,1]

[1,1]

[2,2]

[1,1]

[2,1]

[2,1]

[2,2]

[2,2]

(c) Follower/ReplayerFollower

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Evaluation: Circular Buffer Size
• Delay the user experiences is from the leader’s execution

86

�)%#%�

��'��

�#$

��

���&�%)�%

�!�

�,'�#"

 (�"��+

 (&��%��

$!�

&("� #*

+� �"

��

��"��!�%�

���

��	

���

��	

���

��	

���

�
#

%
!

�
 �

-
�

�
�

+
�

�
(

'
�#

"
��

�!
�

�����%���%�#%!�"����)�%���%�(�%��(���%

����

�����

������

�	����

	�����

Data is normalized to the vanilla (uninstrumented) benchmark

Each bar is a different size
of the circular buffer

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Evaluation: Circular Buffer Size
• Delay the user experiences is from the leader’s execution

87

�)%#%�

��'��

�#$

��

���&�%)�%

�!�

�,'�#"

 (�"��+

 (&��%��

$!�

&("� #*

+� �"

��

��"��!�%�

���

��	

���

��	

���

��	

���

�
#

%
!

�
 �

-
�

�
�

+
�

�
(

'
�#

"
��

�!
�

�����%���%�#%!�"����)�%���%�(�%��(���%

����

�����

������

�	����

	�����

Data is normalized to the vanilla (uninstrumented) benchmark

Each bar is a different size
of the circular buffer

Follower does not
process events in the ring

buffer fast enough and
slows down the leader

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Evaluation: Number of Threads

88

�,(&(�

��* "

�&'

��

���)�(,�(

!$�

!/*�&%

#+ %��.

#+)��(��

'$�

)+%�#&-

.�#�%

���

��%��$�("

���

��

���

��

���

��

���

��

�
&

(
$

�

0
�

�
��

.
�

�
+

*
 &

%
��

 $
�

���&(��(���(�&($�%����,�(���(���)

�

�

�

	

�

�

�

�,(&(�

��* "

�&'

��

���)�(,�(

!$�

!/*�&%

#+ %��.

#+)��(��

'$�

)+%�#&-

.�#�%

���

��%��$�("

���

��

���

��

���

��

���

�
&

(
$

�

0
�

�
��

.
�

�
+

*
 &

%
��

 $
�

�����(���(�&($�%����,�(���(���)

�

�

�

	

�

�

�

�,(&(�

��* "

�&'

��

���)�(,�(

!$�

!/*�&%

#+ %��.

#+)��(��

'$�

)+%�#&-

.�#�%

���

��%��$�("

���

��

���

��

���

��

���

�
&

(
$

�

0
�

�
��

.
�

�
+

*
 &

%
��

 $
�

�����(���(�&($�%����,�(���(���)

�

�

�

	

�

�

�

Data is normalized to the vanilla (uninstrumented) benchmark

Bars are average results of
running with a set thread

count

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

�,(&(�

��* "

�&'

��

���)�(,�(

!$�

!/*�&%

#+ %��.

#+)��(��

'$�

)+%�#&-

.�#�%

���

��%��$�("

���

��

���

��

���

��

���

�
&

(
$

�

0
�

�
��

.
�

�
+

*
 &

%
��

 $
�

�����(���(�&($�%����,�(���(���)

�

�

�

	

�

�

�

�,(&(�

��* "

�&'

��

���)�(,�(

!$�

!/*�&%

#+ %��.

#+)��(��

'$�

)+%�#&-

.�#�%

���

��%��$�("

���

��

���

��

���

��

���

�
&

(
$

�

0
�

�
��

.
�

�
+

*
 &

%
��

 $
�

�����(���(�&($�%����,�(���(���)

�

�

�

	

�

�

�

Evaluation: Number of Threads
• Single threaded benchmarks which use optimized locks

89

�,(&(�

��* "

�&'

��

���)�(,�(

!$�

!/*�&%

#+ %��.

#+)��(��

'$�

)+%�#&-

.�#�%

���

��%��$�("

���

��

���

��

���

��

���

��

�
&

(
$

�

0
�

�
��

.
�

�
+

*
 &

%
��

 $
�

���&(��(���(�&($�%����,�(���(���)

�

�

�

	

�

�

�

Data is normalized to the vanilla (uninstrumented) benchmark

Bars are average results of
running with a set thread

count

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Conclusion

90

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Conclusion

91

OS

Application Deterministic API

Nondeterministic
API

Language API

Existing
MVX

Virtual Machine

VM
Runtime

Application
Deterministic API

Language API

Virtual Machine

VM
Runtime

Nondeterministic
API

(instrumented)

JMVX

Nondeterministic
call sites

(instrumented)

JMVX operates in bytecode rather than directly on system calls1

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Conclusion

92

OS

Application Deterministic API

Nondeterministic
API

Language API

Existing
MVX

Virtual Machine

VM
Runtime

Application
Deterministic API

Language API

Virtual Machine

VM
Runtime

Nondeterministic
API

(instrumented)

JMVX

Nondeterministic
call sites

(instrumented)

JMVX operates in bytecode rather than directly on system calls1 2 Supports both record replay and multi-version execution

Leader FollowerCoordinator

Application
Thread 1

JVM

Application
Thread 2

Application
Thread 1

JVM

Application
Thread 2

Shared Memory Buffer

Shared Memory Buffer

Recorder Replayer

Application
Thread 1

JVM

Application
Thread 2

Application
Thread 1

JVM

Application
Thread 2

Log

Log

Log

Log

Operating System

Runtime
management Application

Operating System

Runtime
management Application

Operating System

Runtime
management Application

Operating System

Runtime
management Application

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Conclusion

93

OS

Application Deterministic API

Nondeterministic
API

Language API

Existing
MVX

Virtual Machine

VM
Runtime

Application
Deterministic API

Language API

Virtual Machine

VM
Runtime

Nondeterministic
API

(instrumented)

JMVX

Nondeterministic
call sites

(instrumented)

JMVX operates in bytecode rather than directly on system calls

System

Nondeterministic API

Virtual Machine

Set flag

USR2

Log stack if
flagged and

unlock

Lock,
clear flag

strace

1 2 3

Application
and runtime

Identifies methods to instrument via dynamic tracing

1 2

3

Supports both record replay and multi-version execution

Leader FollowerCoordinator

Application
Thread 1

JVM

Application
Thread 2

Application
Thread 1

JVM

Application
Thread 2

Shared Memory Buffer

Shared Memory Buffer

Recorder Replayer

Application
Thread 1

JVM

Application
Thread 2

Application
Thread 1

JVM

Application
Thread 2

Log

Log

Log

Log

Operating System

Runtime
management Application

Operating System

Runtime
management Application

Operating System

Runtime
management Application

Operating System

Runtime
management Application

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Conclusion

94

OS

Application Deterministic API

Nondeterministic
API

Language API

Existing
MVX

Virtual Machine

VM
Runtime

Application
Deterministic API

Language API

Virtual Machine

VM
Runtime

Nondeterministic
API

(instrumented)

JMVX

Nondeterministic
call sites

(instrumented)

JMVX operates in bytecode rather than directly on system calls

System

Nondeterministic API

Virtual Machine

Set flag

USR2

Log stack if
flagged and

unlock

Lock,
clear flag

strace

1 2 3

Application
and runtime

Identifies methods to instrument via dynamic tracing

1 2

3 Outperforms rr, the most popular user space record/replay tool4

Benchmarks

N
or

m
al

iz
ed

 E
xe

cu
tio

n
O

ve
rh

ea
d

0

1

2

3

4

5

6

7

8

9

av
ror

a
ba

tik fop h2

h2
 se

rve
r

jm
e

jyt
ho

n

lui
nd

ex

lus
ea

rch pm
d

su
nfl

ow
xa

lan

av
era

ge

JMVX (Sync) rr

Replay Overhead

Benchmark

N
or

m
al

iz
ed

 E
xe

cu
tio

n
O

ve
rh

ea
d

0

1

2

3

4

5

6

7

8

9

10

11

av
ror

a
ba

tik fop h2

h2
 se

rve
r

jm
e

jyt
ho

n

lui
nd

ex

lus
ea

rch pm
d

su
nfl

ow
xa

lan

av
era

ge

JMVX (Sync) rr

Recording Overhead

Supports both record replay and multi-version execution

Leader FollowerCoordinator

Application
Thread 1

JVM

Application
Thread 2

Application
Thread 1

JVM

Application
Thread 2

Shared Memory Buffer

Shared Memory Buffer

Recorder Replayer

Application
Thread 1

JVM

Application
Thread 2

Application
Thread 1

JVM

Application
Thread 2

Log

Log

Log

Log

Operating System

Runtime
management Application

Operating System

Runtime
management Application

Operating System

Runtime
management Application

Operating System

Runtime
management Application

JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Conclusion

95

OS

Application Deterministic API

Nondeterministic
API

Language API

Existing
MVX

Virtual Machine

VM
Runtime

Application
Deterministic API

Language API

Virtual Machine

VM
Runtime

Nondeterministic
API

(instrumented)

JMVX

Nondeterministic
call sites

(instrumented)

JMVX operates in bytecode rather than directly on system calls

System

Nondeterministic API

Virtual Machine

Set flag

USR2

Log stack if
flagged and

unlock

Lock,
clear flag

strace

1 2 3

Application
and runtime

Identifies methods to instrument via dynamic tracing

1 2

3 Outperforms rr, the most popular user space record/replay tool4

Benchmarks

N
or

m
al

iz
ed

 E
xe

cu
tio

n
O

ve
rh

ea
d

0

1

2

3

4

5

6

7

8

9

av
ror

a
ba

tik fop h2

h2
 se

rve
r

jm
e

jyt
ho

n

lui
nd

ex

lus
ea

rch pm
d

su
nfl

ow
xa

lan

av
era

ge

JMVX (Sync) rr

Replay Overhead

Benchmark

N
or

m
al

iz
ed

 E
xe

cu
tio

n
O

ve
rh

ea
d

0

1

2

3

4

5

6

7

8

9

10

11

av
ror

a
ba

tik fop h2

h2
 se

rve
r

jm
e

jyt
ho

n

lui
nd

ex

lus
ea

rch pm
d

su
nfl

ow
xa

lan

av
era

ge

JMVX (Sync) rr

Recording Overhead

Supports both record replay and multi-version execution

Leader FollowerCoordinator

Application
Thread 1

JVM

Application
Thread 2

Application
Thread 1

JVM

Application
Thread 2

Shared Memory Buffer

Shared Memory Buffer

Recorder Replayer

Application
Thread 1

JVM

Application
Thread 2

Application
Thread 1

JVM

Application
Thread 2

Log

Log

Log

Log

Operating System

Runtime
management Application

Operating System

Runtime
management Application

Operating System

Runtime
management Application

Operating System

Runtime
management Application

Code available at: https://github.com/bitslab/jmvx

