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Record Replay (RR)
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1: public static void main(String[] args) throws Exception{
2: FileInputStream configFile = new FileInputStream("config.conf");
3: doWork(configFile);
4: }
5:
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UserDeveloper

1: public static void main(String[] args) throws Exception{
2: FileInputStream configFile = new FileInputStream("config.conf");
3: doWork(configFile);
4: }
5:

Record Replay (RR)
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UserDeveloper
User doesn’t have a config file, leads to:


Exception … java.io.FileNotFoundException: … 

File [poorly documented] report to the developer

1: public static void main(String[] args) throws Exception{
2: FileInputStream configFile = new FileInputStream("config.conf");
3: doWork(configFile);
4: }
5:

Record Replay (RR)
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UserDeveloper
User doesn’t have a config file, leads to:


Exception … java.io.FileNotFoundException: … 

File [poorly documented] report to the developer
Developer has a config file.

Program runs fine!
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2: FileInputStream configFile = new FileInputStream("config.conf");
3: doWork(configFile);
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5:
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UserDeveloper
User doesn’t have a config file, leads to:


Exception … java.io.FileNotFoundException: … 

File [poorly documented] report to the developer
Developer has a config file.

Program runs fine!

Enter a cycle of developer 
probing user for more 

information on the crash 

1: public static void main(String[] args) throws Exception{
2: FileInputStream configFile = new FileInputStream("config.conf");
3: doWork(configFile);
4: }
5:

Record Replay (RR)
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RR
Normally, the program interacts directly with the OS.

Developer is unaware of the computing environment.

1: public static void main(String[] args) throws Exception{
2: FileInputStream configFile = new FileInputStream("config.conf");
3: doWork(configFile);
4: }
5:

Program

Record Replay (RR)
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Record Replay (RR)
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1: public static void main(String[] args) throws Exception{
2: FileInputStream configFile = new FileInputStream("config.conf");
3: doWork(configFile);
4: }
5:
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1: public static void main(String[] args) throws Exception{
2: FileInputStream configFile = new FileInputStream("config.conf");
3: doWork(configFile);
4: }
5:

With Record Replay (RR), a recording of 
nondeterministic interactions with OS is made.

Recording can be given to a developer and replayed.

This imposes the same interactions, allowing the bug 
to be easily reproduced.

No need to ask the user 
for more info
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RR is Offline Multi-version Execution (MVX)
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RecordingRRProgram Recording RR Program

Recorder Replayer
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RRProgram RR Program

Recorder Replayer

Shared Memory Buffer

Log to a shared buffer rather than to disk

RR is Offline Multi-version Execution (MVX)
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RRProgram RR Program

Recorder Replayer

Shared Memory Buffer

Coordinator

Log to a shared buffer rather than to disk

Use a coordinator process to establish communication channels and share resources

RR is Offline Multi-version Execution (MVX)
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MVXProgram MVX Program

Leader Follower

Shared Memory Buffer

Coordinator

Log to a shared buffer rather than to disk

Use a coordinator process to establish communication channels and share resources

RR is Offline Multi-version Execution (MVX)
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Multi-version Execution

Coordinator 
and/or buffer

Leader
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Follower is a different variant

E.g., a newer version of the software
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Run extra instances of our software
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Multi-version Execution

EncountersLeader
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Multi-version Execution
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CrashesEncounters

Different variants can survive crashes
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RR/MVX is Difficult for VM Based Languages
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• VM management leads to divergent behavior
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• Use a higher level of abstraction to tolerate* VM management divergences
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Dynamic Tracing

28

Nondeterministic API

Program 
and VM 
runtime

System

Virtual Machine



JMVX: Fast Multi-threaded Multi-version Execution and Record Replay Authors: Schwartz, Kowshik, Pina

Dynamic Tracing
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Dynamic Tracing
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Dynamic Tracing Results
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Rename the method
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Rename the method

Add “new” method

01: Recorder.read(SocketInputStream s){
02: int r = s.$JMVX$read();
03: log.write(new SocketReadI(r));

04: return r;

05: }
06:

07: Replayer.read(SocketInputStream s){
08: Object o = log.read();

09: assert(o instanceof SocketReadI);

10: return o.i;

11: }
12:

13: class SocketReadI { int i; }
14:

Recorder Strategy
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java.lang ClassLoader loadClass
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Order classes are loaded in is nondeterministic

java.lang ClassLoader loadClass
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java.lang
Required for multi-threaded 

program support. 

A major reason why we 
perform better than rr.
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Manually identified
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Required for multi-threaded 

program support. 

A major reason why we 
perform better than rr.
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Manually identified

Automatically detected and instrumented

java.lang
Required for multi-threaded 

program support. 

A major reason why we 
perform better than rr.
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Multi-threading
• Lamport clock provides total order of monitor entry (locking an object)
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Multi-threading Instrumentation
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Multi-threading Instrumentation
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$JMVX$m() {
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Multi-threading Instrumentation
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$JMVX$m() {

Add a new method
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Multi-threading Instrumentation
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$JMVX$m() {

Add a new method

Implements the synchronized 
logic through JMVX while 
logging or enforcing the 

ordering of the vector clock
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Ring Buffer
• Fast shared memory queue


• Shared off heap byte buffer


• Made with mmap


• Managed with Unsafe


• Java class that allows direct memory access
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Ring Buffer
• Fast shared memory queue


• Shared off heap byte buffer


• Made with mmap


• Managed with Unsafe


• Java class that allows direct memory access
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No locks used in this design, 
so it’s very fast!
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Ring Buffer
• Fast shared memory queue


• Shared off heap byte buffer


• Made with mmap


• Managed with Unsafe


• Java class that allows direct memory access
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No locks used in this design, 
so it’s very fast!

More details in the paper!
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Divergence Handling
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===== DaCapo unknown pmd starting ===== 
PMD checked 601 files. 
===== DaCapo unknown pmd PASSED in 10558 msec =====

===== DaCapo unknown pmd starting ===== 
PMD checked 601 files. 
===== DaCapo unknown pmd PASSED in 9518 msec =====

Leader Output Follower Output
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Divergence Handling

69

===== DaCapo unknown pmd starting ===== 
PMD checked 601 files. 
===== DaCapo unknown pmd PASSED in 10558 msec =====

===== DaCapo unknown pmd starting ===== 
PMD checked 601 files. 
===== DaCapo unknown pmd PASSED in 9518 msec =====

DIVERGENCE

Leader Output Follower Output
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===== DaCapo unknown pmd starting ===== 
PMD checked 601 files. 
===== DaCapo unknown pmd PASSED in 10558 msec =====

===== DaCapo unknown pmd starting ===== 
PMD checked 601 files. 
===== DaCapo unknown pmd PASSED in 9518 msec =====

Divergence Handling
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Leader Output Follower Output

DIVERGENCE
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Divergence Handling
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===== DaCapo unknown pmd starting ===== 
PMD checked 601 files. 
===== DaCapo unknown pmd PASSED in 9518 msec =====

===== DaCapo unknown pmd starting ===== 
PMD checked 601 files. 
===== DaCapo unknown pmd PASSED in 10558 msec and divergence handled =====

Leader Output Follower Output
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Evaluation: Research Questions
• What’s the bytecode instrumentation overhead?


• What’s the RR overhead?


• Compare with rr and Chronicler


• What’s the MVX overhead?


• How does JMVX scale?


• With respect to number of threads and the size of the ring buffer


• (Mostly) Used programs from the DaCapo benchmark suite
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Evaluation (Note): Sync Vs Nosync
• Full/partial instrumentation respectively (sync vs nosync)
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Evaluation (Note): Sync Vs Nosync
• Full/partial instrumentation respectively (sync vs nosync)
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Nosync/partial instrumentation 
excludes classes that ordered multi-

threaded events
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Evaluation (Note): Sync Vs Nosync
• Full/partial instrumentation respectively (sync vs nosync)

75

Nosync/partial instrumentation 
excludes classes that ordered multi-

threaded events

Modes exist to have a fair 
comparison with other systems
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Evaluation: Instrumentation
• Pass through strategy used to measure overhead


• Measures cost of diverting to JMVX 

• Without multi-threading instrumentation: 2% overhead


• With multi-threading instrumentation: 5% overhead 

• Vector clock is not in use

76

1: void Passthrough.monitorEnter(Object o}
2: //grab lock
3: Unsafe.monitorenter(o);

4: }
5:

6: int Passthrough.read(SocketInputStream s){
7: //no logging
8: return s.$JMVX$read();
9: }
10:
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Evaluation: Instrumentation
• Pass through strategy used to measure overhead


• Measures cost of diverting to JMVX 

• Nosync instrumentation: 2% overhead


• Sync instrumentation: 5% overhead
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1: void Passthrough.monitorEnter(Object o}
2: //grab lock
3: Unsafe.monitorenter(o);

4: }
5:

6: int Passthrough.read(SocketInputStream s){
7: //no logging
8: return s.$JMVX$read();
9: }
10:
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Evaluation: RR (vs rr)
• Record: JMVX 1.25x overhead | rr 4.33x overhead


• Replay: JMVX 1.73x overhead | rr 4.70x overhead
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Evaluation: Recording Size
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Evaluation: RR (vs Chronicler)
• Record: JMVX 1.08x overhead | Chronicler 1.14x overhead


• Replay: JMVX 1.13x overhead | Chronicler NA
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Evaluation: RR (vs Chronicler)
• Record: JMVX 1.08x overhead | Chronicler 1.14x overhead


• Replay: JMVX 1.13x overhead | Chronicler NA
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Evaluation: RR (vs Chronicler)
• Record: JMVX 1.08x overhead | Chronicler 1.14x overhead


• Replay: JMVX 1.13x overhead | Chronicler NA
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Evaluation: MVX
• Leader: 1.47x overhead


• Follower: 1.80x overhead

83Data is normalized to the vanilla (uninstrumented) benchmark

Sync mode
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Evaluation: MVX
• Leader: 1.47x overhead


• Follower: 1.80x overhead
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Sync mode

Data is normalized to the vanilla (uninstrumented) benchmark
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• Leader: 1.47x overhead


• Follower: 1.80x overhead

Evaluation: MVX

85

Many short critical sections.

Vector clock is biased for the Leader.

Delayed events add up.

Data is normalized to the vanilla (uninstrumented) benchmark

Sync mode
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Evaluation: Circular Buffer Size
• Delay the user experiences is from the leader’s execution
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Evaluation: Circular Buffer Size
• Delay the user experiences is from the leader’s execution
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Evaluation: Number of Threads
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Bars are average results of 
running with a set thread 
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Evaluation: Number of Threads
• Single threaded benchmarks which use optimized locks
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Conclusion
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JMVX operates in bytecode rather than directly on system calls1
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Conclusion
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Recording Overhead

Supports both record replay and multi-version execution
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Code available at: https://github.com/bitslab/jmvx


