
Mvedsua: Higher Availability Dynamic Software
Updates via Multi-Version Execution

Mvedsua: Higher Availability Dynamic Software
Updates via Multi-Version Execution

Luís Pina
George Mason University

lpina2@gmu.edu
Anastasios Andronidis
Imperial College London

a.andronidis@imperial.ac.uk

Michael Hicks
University of Maryland

mwh@cs.umd.edu

Cristian Cadar
Imperial College London
c.cadar@imperial.ac.uk

2

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

An Update is Available!

3

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

An Update is Available!
Good idea to install

4

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

An Update is Available!
Good idea to install, especially if you keep sensitive data

+

5

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Software Updates are Disruptive

T
h
ro
u
g
h
p
u
t

Time

Version N

Update Available

7

6

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Software Updates are Disruptive

T
h
ro
u
g
h
p
u
t

Time

Version N

Update Available

7

7

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Software Updates are Disruptive

T
h
ro
u
g
h
p
u
t

Time

Version N

Update Available

7

8

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Software Updates are Disruptive

T
h
ro
u
g
h
p
u
t

Time

Version N

Update Available

7 Version N + 1

9

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Software Updates are Disruptive
T
h
ro
u
g
h
p
u
t

Time

Version N

Update Available

7 Version N + 1

10

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Software Updates are Disruptive
T
h
ro
u
g
h
p
u
t

Time

Version N

Update Available

7 Version N + 1

11

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Software Updates are Disruptive
T
h
ro
u
g
h
p
u
t

Time

Version N

Update Available

7 Version N + 1

12

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Software Updates are Disruptive
T
h
ro
u
g
h
p
u
t

Time

Version N

Update Available

7 Version N + 1

13

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Dynamic Software Updating (DSU)

Version N

Version N

Update Available

N → N + 1

14

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Dynamic Software Updating (DSU)

Version N

Version N

Update Available

N → N + 1

15

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Dynamic Software Updating (DSU)

Version N

Version N

Update Available

N → N + 1

16

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Dynamic Software Updating (DSU)

Version N

Version N

Update Available

N → N + 1

N → N + 1 Version N + 1

17

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Update Errors

Errors:
I New version
I State transformation
I Code to start the new version
I Code to stop the old version

Results:
I Crash/hang
I Corrupted state
I Loss of state

18

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Update Errors

Errors:
I New version
I State transformation
I Code to start the new version
I Code to stop the old version

Results:
I Crash/hang
I Corrupted state
I Loss of state

19

Mvedsua: Higher Availability Dynamic Software
Updates via Multi-Version Execution

Mvedsua: Higher Availability Dynamic Software
Updates via Multi-Version Execution

I Dynamic Software Updates
I No loss of state during updates

I Multi-Version Execution
I Execute old and new versions in parallel
I Tolerate/detect update errors

I Match old and new states
I Through developer-specified rules

I Good performance
I Low steady-state overhead
I Mask update pause

Mvedsua: Higher Availability Dynamic Software
Updates via Multi-Version Execution

Mvedsua: Higher Availability Dynamic Software
Updates via Multi-Version Execution

I Dynamic Software Updates
I No loss of state during updates

I Multi-Version Execution
I Execute old and new versions in parallel
I Tolerate/detect update errors

I Match old and new states
I Through developer-specified rules

I Good performance
I Low steady-state overhead
I Mask update pause

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Example DSU
Changes

In-memory key-val store with simple format:

put(key,val)

An update adds types:

put(type ,key,val)

With types string or int

22

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Example DSU
Updates as any other program feature

I How to transform the state?

(key,val)=("string",key,val)

I When to update?
I E.g., when not processing any request

I How to restart the program from where it stopped?

Kitsune: Efficient, General-purpose Dynamic Software Updating for C

Christopher M. Hayden Edward K. Smith Michail Denchev
Michael Hicks Jeffrey S. Foster

University of Maryland, College Park, USA
{hayden,tedks,mdenchev,mwh,jfoster}@cs.umd.edu

Abstract
Dynamic software updating (DSU) systems allow programs
to be updated while running, thereby permitting developers
to add features and fix bugs without downtime. This paper
introduces Kitsune, a new DSU system for C whose design
has three notable features. First, Kitsune’s updating mecha-
nism updates the whole program, not individual functions.
This mechanism is more flexible than most prior approaches
and places no restrictions on data representations or allowed
compiler optimizations. Second, Kitsune makes the impor-
tant aspects of updating explicit in the program text, making
the program’s semantics easy to understand while minimiz-
ing programmer effort. Finally, the programmer can write
simple specifications to direct Kitsune to generate code that
traverses and transforms old-version state for use by new
code; such state transformation is often necessary, and is
significantly more difficult in prior DSU systems. We have
used Kitsune to update five popular, open-source, single- and
multi-threaded programs, and find that few program changes
are required to use Kitsune, and that it incurs essentially no
performance overhead.

Categories and Subject Descriptors C.4 [Performance of
Systems]: Reliability, availability, and serviceability

General Terms Design, Languages

Keywords dynamic software updating

1. Introduction
Running software systems without incurring downtime is
very important in today’s 24/7 world. Dynamic software
updating (DSU) services can update programs with new
code—to fix bugs or add features—without shutting them
down. The research community has shown that general-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’12, October 19–26, 2012, Tucson, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1561-6/12/10. . . $10.00

purpose DSU is feasible: systems that support dynamic up-
grades to running C, C++, and Java programs have been ap-
plied to dozens of realistic applications, tracking changes ac-
cording to those applications’ release histories [1, 5, 9, 12–
14, 16, 17, 19]. Concurrently, industry has begun to package
DSU support into commercial products [2, 20].

The strength of DSU is its ability to preserve program
state during an update. For example, servers for databases,
media, FTP, SSH, and routing can maintain client connec-
tions for unbounded time periods. DSU can allow those
active connections to immediately benefit from important
program updates (e.g., security fixes), whereas traditional
updating strategies like rolling upgrades cannot. Servers
may also maintain significant in-memory state; examples in-
clude memcached (a caching server) and redis (a key-value
server). DSU techniques can maintain this in-memory state
across the update, whereas traditional upgrade techniques
will lose it (memcached) or must rely on an expensive disk
reload that degrades performance (redis).

We are interested in supporting general-purpose DSU for
single- and multi-threaded C applications. While progress
made by existing DSU systems is promising, a truly prac-
tical system must be in harmony with the main reasons de-
velopers use C: control over low-level data representations;
explicit resource management; legacy code; and, perhaps
above all, performance. In this paper we present Kitsune, a
new DSU system for C that is the first to satisfy these motiva-
tions while supporting general-purpose dynamic updates in a
programmer-friendly manner. (We compare in detail against
related systems in Section 5.)

Kitsune operates in harmony with C thanks to three key
design and implementation choices. First, Kitsune uses en-
tirely standard compilation. After a translation pass to add
some boilerplate calls to the Kitsune runtime, a Kitsune pro-
gram is compiled and linked to form a shared object file
(via a simple Makefile change). When a Kitsune program
is launched, the runtime starts a driver routine that loads the
first version’s shared object file and transfers control to it.
When a dynamic update becomes available (only at specific
program points, as discussed shortly), the program longjmps
back to the driver routine, which loads the new application
version and calls the new version’s main function. Thus, ap-

23

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Example DSU
Updates as any other program feature

I How to transform the state?

(key,val)=("string",key,val)

I When to update?
I E.g., when not processing any request

I How to restart the program from where it stopped?
Kitsune: Efficient, General-purpose Dynamic Software Updating for C

Christopher M. Hayden Edward K. Smith Michail Denchev
Michael Hicks Jeffrey S. Foster

University of Maryland, College Park, USA
{hayden,tedks,mdenchev,mwh,jfoster}@cs.umd.edu

Abstract
Dynamic software updating (DSU) systems allow programs
to be updated while running, thereby permitting developers
to add features and fix bugs without downtime. This paper
introduces Kitsune, a new DSU system for C whose design
has three notable features. First, Kitsune’s updating mecha-
nism updates the whole program, not individual functions.
This mechanism is more flexible than most prior approaches
and places no restrictions on data representations or allowed
compiler optimizations. Second, Kitsune makes the impor-
tant aspects of updating explicit in the program text, making
the program’s semantics easy to understand while minimiz-
ing programmer effort. Finally, the programmer can write
simple specifications to direct Kitsune to generate code that
traverses and transforms old-version state for use by new
code; such state transformation is often necessary, and is
significantly more difficult in prior DSU systems. We have
used Kitsune to update five popular, open-source, single- and
multi-threaded programs, and find that few program changes
are required to use Kitsune, and that it incurs essentially no
performance overhead.

Categories and Subject Descriptors C.4 [Performance of
Systems]: Reliability, availability, and serviceability

General Terms Design, Languages

Keywords dynamic software updating

1. Introduction
Running software systems without incurring downtime is
very important in today’s 24/7 world. Dynamic software
updating (DSU) services can update programs with new
code—to fix bugs or add features—without shutting them
down. The research community has shown that general-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’12, October 19–26, 2012, Tucson, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1561-6/12/10. . . $10.00

purpose DSU is feasible: systems that support dynamic up-
grades to running C, C++, and Java programs have been ap-
plied to dozens of realistic applications, tracking changes ac-
cording to those applications’ release histories [1, 5, 9, 12–
14, 16, 17, 19]. Concurrently, industry has begun to package
DSU support into commercial products [2, 20].

The strength of DSU is its ability to preserve program
state during an update. For example, servers for databases,
media, FTP, SSH, and routing can maintain client connec-
tions for unbounded time periods. DSU can allow those
active connections to immediately benefit from important
program updates (e.g., security fixes), whereas traditional
updating strategies like rolling upgrades cannot. Servers
may also maintain significant in-memory state; examples in-
clude memcached (a caching server) and redis (a key-value
server). DSU techniques can maintain this in-memory state
across the update, whereas traditional upgrade techniques
will lose it (memcached) or must rely on an expensive disk
reload that degrades performance (redis).

We are interested in supporting general-purpose DSU for
single- and multi-threaded C applications. While progress
made by existing DSU systems is promising, a truly prac-
tical system must be in harmony with the main reasons de-
velopers use C: control over low-level data representations;
explicit resource management; legacy code; and, perhaps
above all, performance. In this paper we present Kitsune, a
new DSU system for C that is the first to satisfy these motiva-
tions while supporting general-purpose dynamic updates in a
programmer-friendly manner. (We compare in detail against
related systems in Section 5.)

Kitsune operates in harmony with C thanks to three key
design and implementation choices. First, Kitsune uses en-
tirely standard compilation. After a translation pass to add
some boilerplate calls to the Kitsune runtime, a Kitsune pro-
gram is compiled and linked to form a shared object file
(via a simple Makefile change). When a Kitsune program
is launched, the runtime starts a driver routine that loads the
first version’s shared object file and transfers control to it.
When a dynamic update becomes available (only at specific
program points, as discussed shortly), the program longjmps
back to the driver routine, which loads the new application
version and calls the new version’s main function. Thus, ap-

24

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Rolling Upgrades

Version N Version N Version N

Restarting in
Version N + 1Version N + 1 Version N + 1 Version N + 1

25

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Rolling Upgrades

Version N

Version N Version NRestarting in
Version N + 1

Version N + 1 Version N + 1 Version N + 1

26

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Rolling Upgrades

Version N

Version N Version N

Restarting in
Version N + 1

Version N + 1

Version N + 1 Version N + 1

27

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Rolling Upgrades

Version N Version N Version NRestarting in
Version N + 1

Version N + 1 Version N + 1 Version N + 1

28

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Rolling Upgrades
Loss of State

Version NRestarting in
Version N + 1 Version N Version N

USENIX Association 	 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13)  385

Scaling Memcache at Facebook

Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee, Harry C. Li,
Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford, Tony Tung,

Venkateshwaran Venkataramani
{rajeshn,hans}@fb.com, {sgrimm, marc}@facebook.com, {herman, hcli, rm, mpal, dpeek, ps, dstaff, ttung, veeve}@fb.com

Facebook Inc.

Abstract: Memcached is a well known, simple, in-
memory caching solution. This paper describes how
Facebook leverages memcached as a building block to
construct and scale a distributed key-value store that
supports the world’s largest social network. Our system
handles billions of requests per second and holds tril-
lions of items to deliver a rich experience for over a bil-
lion users around the world.

1 Introduction
Popular and engaging social networking sites present
significant infrastructure challenges. Hundreds of mil-
lions of people use these networks every day and im-
pose computational, network, and I/O demands that tra-
ditional web architectures struggle to satisfy. A social
network’s infrastructure needs to (1) allow near real-
time communication, (2) aggregate content on-the-fly
from multiple sources, (3) be able to access and update
very popular shared content, and (4) scale to process
millions of user requests per second.

We describe how we improved the open source ver-
sion of memcached [14] and used it as a building block to
construct a distributed key-value store for the largest so-
cial network in the world. We discuss our journey scal-
ing from a single cluster of servers to multiple geograph-
ically distributed clusters. To the best of our knowledge,
this system is the largest memcached installation in the
world, processing over a billion requests per second and
storing trillions of items.

This paper is the latest in a series of works that have
recognized the flexibility and utility of distributed key-
value stores [1, 2, 5, 6, 12, 14, 34, 36]. This paper fo-
cuses on memcached—an open-source implementation
of an in-memory hash table—as it provides low latency
access to a shared storage pool at low cost. These quali-
ties enable us to build data-intensive features that would
otherwise be impractical. For example, a feature that
issues hundreds of database queries per page request
would likely never leave the prototype stage because it
would be too slow and expensive. In our application,

however, web pages routinely fetch thousands of key-
value pairs from memcached servers.

One of our goals is to present the important themes
that emerge at different scales of our deployment. While
qualities like performance, efficiency, fault-tolerance,
and consistency are important at all scales, our experi-
ence indicates that at specific sizes some qualities re-
quire more effort to achieve than others. For exam-
ple, maintaining data consistency can be easier at small
scales if replication is minimal compared to larger ones
where replication is often necessary. Additionally, the
importance of finding an optimal communication sched-
ule increases as the number of servers increase and net-
working becomes the bottleneck.

This paper includes four main contributions: (1)
We describe the evolution of Facebook’s memcached-
based architecture. (2) We identify enhancements to
memcached that improve performance and increase
memory efficiency. (3) We highlight mechanisms that
improve our ability to operate our system at scale. (4)
We characterize the production workloads imposed on
our system.

2 Overview
The following properties greatly influence our design.
First, users consume an order of magnitude more con-
tent than they create. This behavior results in a workload
dominated by fetching data and suggests that caching
can have significant advantages. Second, our read op-
erations fetch data from a variety of sources such as
MySQL databases, HDFS installations, and backend
services. This heterogeneity requires a flexible caching
strategy able to store data from disparate sources.
Memcached provides a simple set of operations (set,

get, and delete) that makes it attractive as an elemen-
tal component in a large-scale distributed system. The
open-source version we started with provides a single-
machine in-memory hash table. In this paper, we discuss
how we took this basic building block, made it more ef-
ficient, and used it to build a distributed key-value store
that can process billions of requests per second. Hence-

29

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Rolling Upgrades
Loss of State

Version NRestarting in
Version N + 1 Version N Version N

USENIX Association 	 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13)  385

Scaling Memcache at Facebook

Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee, Harry C. Li,
Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford, Tony Tung,

Venkateshwaran Venkataramani
{rajeshn,hans}@fb.com, {sgrimm, marc}@facebook.com, {herman, hcli, rm, mpal, dpeek, ps, dstaff, ttung, veeve}@fb.com

Facebook Inc.

Abstract: Memcached is a well known, simple, in-
memory caching solution. This paper describes how
Facebook leverages memcached as a building block to
construct and scale a distributed key-value store that
supports the world’s largest social network. Our system
handles billions of requests per second and holds tril-
lions of items to deliver a rich experience for over a bil-
lion users around the world.

1 Introduction
Popular and engaging social networking sites present
significant infrastructure challenges. Hundreds of mil-
lions of people use these networks every day and im-
pose computational, network, and I/O demands that tra-
ditional web architectures struggle to satisfy. A social
network’s infrastructure needs to (1) allow near real-
time communication, (2) aggregate content on-the-fly
from multiple sources, (3) be able to access and update
very popular shared content, and (4) scale to process
millions of user requests per second.

We describe how we improved the open source ver-
sion of memcached [14] and used it as a building block to
construct a distributed key-value store for the largest so-
cial network in the world. We discuss our journey scal-
ing from a single cluster of servers to multiple geograph-
ically distributed clusters. To the best of our knowledge,
this system is the largest memcached installation in the
world, processing over a billion requests per second and
storing trillions of items.

This paper is the latest in a series of works that have
recognized the flexibility and utility of distributed key-
value stores [1, 2, 5, 6, 12, 14, 34, 36]. This paper fo-
cuses on memcached—an open-source implementation
of an in-memory hash table—as it provides low latency
access to a shared storage pool at low cost. These quali-
ties enable us to build data-intensive features that would
otherwise be impractical. For example, a feature that
issues hundreds of database queries per page request
would likely never leave the prototype stage because it
would be too slow and expensive. In our application,

however, web pages routinely fetch thousands of key-
value pairs from memcached servers.

One of our goals is to present the important themes
that emerge at different scales of our deployment. While
qualities like performance, efficiency, fault-tolerance,
and consistency are important at all scales, our experi-
ence indicates that at specific sizes some qualities re-
quire more effort to achieve than others. For exam-
ple, maintaining data consistency can be easier at small
scales if replication is minimal compared to larger ones
where replication is often necessary. Additionally, the
importance of finding an optimal communication sched-
ule increases as the number of servers increase and net-
working becomes the bottleneck.

This paper includes four main contributions: (1)
We describe the evolution of Facebook’s memcached-
based architecture. (2) We identify enhancements to
memcached that improve performance and increase
memory efficiency. (3) We highlight mechanisms that
improve our ability to operate our system at scale. (4)
We characterize the production workloads imposed on
our system.

2 Overview
The following properties greatly influence our design.
First, users consume an order of magnitude more con-
tent than they create. This behavior results in a workload
dominated by fetching data and suggests that caching
can have significant advantages. Second, our read op-
erations fetch data from a variety of sources such as
MySQL databases, HDFS installations, and backend
services. This heterogeneity requires a flexible caching
strategy able to store data from disparate sources.
Memcached provides a simple set of operations (set,

get, and delete) that makes it attractive as an elemen-
tal component in a large-scale distributed system. The
open-source version we started with provides a single-
machine in-memory hash table. In this paper, we discuss
how we took this basic building block, made it more ef-
ficient, and used it to build a distributed key-value store
that can process billions of requests per second. Hence-

30

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Rolling Upgrades
Incompatible Protocol

Version N + 1 Version N Version N

put(type ,k,v) put(k,v) put(k,v)

31

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Reliable Updates with Mvedsua

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N N → N + 1

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N N → N + 1 Version N + 1

Version N

Fork

Buffer
Requests

Drain
Requests

Compare
Requests

7

Child Updating
Parent provides service

32

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Reliable Updates with Mvedsua

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N N → N + 1

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N N → N + 1 Version N + 1

Version N

Fork

Buffer
Requests

Drain
Requests

Compare
Requests

7

Child Updating
Parent provides service

33

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Reliable Updates with Mvedsua

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N N → N + 1

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N N → N + 1 Version N + 1

Version N

Fork

Buffer
Requests

Drain
Requests

Compare
Requests

7

Child Updating
Parent provides service

34

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Multi-Version Execution

Leader

User

Follower

Varan

OS Kernel

Shared
Memory

Version 0

read(0,_,128)

read(0,_,128)

read(0,_,128) = 6 // "foobar"

6, "foobar"
. . .

. . .

. . .

1
2
3
4

5
67

8
9
10
11

12

Ring
Buffer Msan

Valgrind

Asan

FreeDA

1
2
3
4

5
67

8
9
10
11

12

35

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Multi-Version Execution

Leader

User

Follower

Varan

OS Kernel

Shared
Memory

read(0,_,128)

read(0,_,128)

read(0,_,128) = 6 // "foobar"

6, "foobar"
. . .

. . .

. . .

1
2
3
4

5
67

8
9
10
11

12

Ring
Buffer Msan

Valgrind

Asan

FreeDA

1
2
3
4

5
67

8
9
10
11

12

36

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Multi-Version Execution

Leader

User

Follower

Varan

OS Kernel

Shared
Memory

read(0,_,128)

read(0,_,128)

read(0,_,128) = 6 // "foobar"

6, "foobar"
. . .

. . .

. . .

1
2
3
4

5
67

8
9
10
11

12

Ring
Buffer Msan

Valgrind

Asan

FreeDA

1
2
3
4

5
67

8
9
10
11

12

37

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Multi-Version Execution

Leader

User

Follower

Varan

OS Kernel

Shared
Memory

read(0,_,128)

read(0,_,128)

read(0,_,128) = 6 // "foobar"

6, "foobar"
. . .

. . .

. . .

1
2
3
4

5
67

8
9
10
11

12

Ring
Buffer Msan

Valgrind

Asan

FreeDA

1
2
3
4

5
67

8
9
10
11

12

38

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Multi-Version Execution

Leader

User

Follower

Varan

OS Kernel

Shared
Memory

read(0,_,128)

read(0,_,128)

read(0,_,128) = 6 // "foobar"

6, "foobar"
. . .

. . .

. . .

1
2
3
4

5
67

8
9
10
11

12

Ring
Buffer Msan

Valgrind

Asan

FreeDA

1
2
3
4

5
67

8
9
10
11

12

39

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Multi-Version Execution

Leader

User

Follower

Varan

OS Kernel

Shared
Memory

read(0,_,128)

read(0,_,128)

read(0,_,128) = 6 // "foobar"

6, "foobar"

. . .

. . .

. . .

1
2
3
4

5
67

8
9
10
11

12

Ring
Buffer Msan

Valgrind

Asan

FreeDA

1
2
3
4

5
67

8
9
10
11

12

40

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Multi-Version Execution

Leader

User

Follower

Varan

OS Kernel

Shared
Memory

read(0,_,128)

read(0,_,128)

read(0,_,128) = 6 // "foobar"

6, "foobar"

. . .

. . .

. . .

1
2
3
4

5
67

8
9
10
11

12

Ring
Buffer Msan

Valgrind

Asan

FreeDA

1
2
3
4

5
67

8
9
10
11

12

41

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Multi-Version Execution

Leader

User

Follower

Varan

OS Kernel

Shared
Memory

read(0,_,128)

read(0,_,128)

read(0,_,128) = 6 // "foobar"

6, "foobar"

. . .

. . .

. . .

1
2
3
4

5
67

8
9
10
11

12

Ring
Buffer Msan

Valgrind

Asan

FreeDA

1
2
3
4

5
67

8
9
10
11

12

42

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Multi-Version Execution

Leader

User

Follower

Varan

OS Kernel

Shared
Memory

read(0,_,128)

read(0,_,128)

read(0,_,128) = 6 // "foobar"

6, "foobar"

. . .

. . .

. . .

1
2
3
4

5
67

8
9
10
11

12

Ring
Buffer Msan

Valgrind

Asan

FreeDA

1
2
3
4

5
67

8
9
10
11

12

43

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Multi-Version Execution

Leader

User

Follower

Varan

OS Kernel

Shared
Memory

read(0,_,128)

read(0,_,128)

read(0,_,128) = 6 // "foobar"

6, "foobar"
. . .

. . .

. . .

1
2
3
4

5
67

8
9
10
11

12

Ring
Buffer

Msan

Valgrind

Asan

FreeDA

1
2
3
4

5
67

8
9
10
11

12

44

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Reliable Updates with Mvedsua

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N N → N + 1

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N N → N + 1 Version N + 1

Version N

Fork

Buffer
Requests

Drain
Requests

Compare
Requests

7

Child Updating
Parent provides service

45

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Reliable Updates with Mvedsua

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N N → N + 1

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N N → N + 1 Version N + 1

Version N

Fork

Buffer
Requests

Drain
Requests

Compare
Requests

7

Child Updating
Parent provides service

46

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Reliable Updates with Mvedsua

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N N → N + 1

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N N → N + 1 Version N + 1

Version N

Version N N → N + 1 Version N + 1

Version N

Fork

Buffer
Requests

Drain
Requests

Compare
Requests

7

Child Updating
Parent provides service

47

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Reliable Updates with Mvedsua

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N N → N + 1

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N N → N + 1 Version N + 1

Version N

Version N N → N + 1 Version N + 1

Version N

Fork

Buffer
Requests

Drain
Requests

Compare
Requests

7

Child Updating
Parent provides service

48

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Reliable Updates with Mvedsua

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N N → N + 1

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N N → N + 1 Version N + 1

Version N

Fork

Buffer
Requests

Drain
Requests

Compare
Requests

7

Child Updating
Parent provides service

49

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Mapping semantics

What about
non-backwards-compatible

features?

(Or backwards-compatible features implemented differently?)

50

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Mapping semantics
Example update

In-memory key-val store with simple wire protocol:

read(_,"put(key,val)",_)

An update adds types:

read(_,"put(type ,key,val)",_)

With types string or int

51

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Mapping semantics
MVE

Old Version

New Version

s

snew

transform(k,v) = (string,k,v)

put(k,v)

put(k,v)put(string,k,v)

map

put(string,k,v)

put(string,k,v)not supported

map

put(string,k,v)

put(k,v)

mapnew→old

put(int,k,v)

7impossible

mapnew→old

52

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Mapping semantics
MVE

Old Version

New Version

s

snew

transform(k,v) = (string,k,v)

put(k,v)

put(k,v)put(string,k,v)

map

put(string,k,v)

put(string,k,v)not supported

map

put(string,k,v)

put(k,v)

mapnew→old

put(int,k,v)

7impossible

mapnew→old

53

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Mapping semantics
MVE

Old Version

New Version

s

snew

transform(k,v) = (string,k,v)

put(k,v)

put(k,v)

put(string,k,v)

map

put(string,k,v)

put(string,k,v)not supported

map

put(string,k,v)

put(k,v)

mapnew→old

put(int,k,v)

7impossible

mapnew→old

54

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Mapping semantics
MVE

Old Version

New Version

s

snew

transform(k,v) = (string,k,v)

put(k,v)

put(k,v)

put(string,k,v)

map

put(string,k,v)

put(string,k,v)not supported

map

put(string,k,v)

put(k,v)

mapnew→old

put(int,k,v)

7impossible

mapnew→old

55

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Mapping semantics
MVE

Old Version

New Version

s

snew

transform(k,v) = (string,k,v)

put(k,v)

put(k,v)

put(string,k,v)

map

put(string,k,v)

put(string,k,v)not supported

map

put(string,k,v)

put(k,v)

mapnew→old

put(int,k,v)

7impossible

mapnew→old

56

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Mapping semantics
Command mappings

1. map old → new [put(k,v)] = put(string,k,v)

2. map old → new [put(string,k,v)] = not supported

3. map new → old [put(string,k,v)] = put(k,v)

4. map new → old [put(k,v)] = not supported

57

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Implementing Mvedsua

Kitsune: Efficient, General-purpose Dynamic Software Updating for C

Christopher M. Hayden Edward K. Smith Michail Denchev
Michael Hicks Jeffrey S. Foster

University of Maryland, College Park, USA
{hayden,tedks,mdenchev,mwh,jfoster}@cs.umd.edu

Abstract
Dynamic software updating (DSU) systems allow programs
to be updated while running, thereby permitting developers
to add features and fix bugs without downtime. This paper
introduces Kitsune, a new DSU system for C whose design
has three notable features. First, Kitsune’s updating mecha-
nism updates the whole program, not individual functions.
This mechanism is more flexible than most prior approaches
and places no restrictions on data representations or allowed
compiler optimizations. Second, Kitsune makes the impor-
tant aspects of updating explicit in the program text, making
the program’s semantics easy to understand while minimiz-
ing programmer effort. Finally, the programmer can write
simple specifications to direct Kitsune to generate code that
traverses and transforms old-version state for use by new
code; such state transformation is often necessary, and is
significantly more difficult in prior DSU systems. We have
used Kitsune to update five popular, open-source, single- and
multi-threaded programs, and find that few program changes
are required to use Kitsune, and that it incurs essentially no
performance overhead.

Categories and Subject Descriptors C.4 [Performance of
Systems]: Reliability, availability, and serviceability

General Terms Design, Languages

Keywords dynamic software updating

1. Introduction
Running software systems without incurring downtime is
very important in today’s 24/7 world. Dynamic software
updating (DSU) services can update programs with new
code—to fix bugs or add features—without shutting them
down. The research community has shown that general-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’12, October 19–26, 2012, Tucson, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1561-6/12/10. . . $10.00

purpose DSU is feasible: systems that support dynamic up-
grades to running C, C++, and Java programs have been ap-
plied to dozens of realistic applications, tracking changes ac-
cording to those applications’ release histories [1, 5, 9, 12–
14, 16, 17, 19]. Concurrently, industry has begun to package
DSU support into commercial products [2, 20].

The strength of DSU is its ability to preserve program
state during an update. For example, servers for databases,
media, FTP, SSH, and routing can maintain client connec-
tions for unbounded time periods. DSU can allow those
active connections to immediately benefit from important
program updates (e.g., security fixes), whereas traditional
updating strategies like rolling upgrades cannot. Servers
may also maintain significant in-memory state; examples in-
clude memcached (a caching server) and redis (a key-value
server). DSU techniques can maintain this in-memory state
across the update, whereas traditional upgrade techniques
will lose it (memcached) or must rely on an expensive disk
reload that degrades performance (redis).

We are interested in supporting general-purpose DSU for
single- and multi-threaded C applications. While progress
made by existing DSU systems is promising, a truly prac-
tical system must be in harmony with the main reasons de-
velopers use C: control over low-level data representations;
explicit resource management; legacy code; and, perhaps
above all, performance. In this paper we present Kitsune, a
new DSU system for C that is the first to satisfy these motiva-
tions while supporting general-purpose dynamic updates in a
programmer-friendly manner. (We compare in detail against
related systems in Section 5.)

Kitsune operates in harmony with C thanks to three key
design and implementation choices. First, Kitsune uses en-
tirely standard compilation. After a translation pass to add
some boilerplate calls to the Kitsune runtime, a Kitsune pro-
gram is compiled and linked to form a shared object file
(via a simple Makefile change). When a Kitsune program
is launched, the runtime starts a driver routine that loads the
first version’s shared object file and transfers control to it.
When a dynamic update becomes available (only at specific
program points, as discussed shortly), the program longjmps
back to the driver routine, which loads the new application
version and calls the new version’s main function. Thus, ap-

VARAN the Unbelievable
An Efficient N-version Execution Framework

Petr Hosek Cristian Cadar
Department of Computing
Imperial College London

{p.hosek, c.cadar}@imperial.ac.uk

Abstract
With the widespread availability of multi-core processors,
running multiple diversified variants or several different ver-
sions of an application in parallel is becoming a viable ap-
proach for increasing the reliability and security of software
systems. The key component of such N-version execution
(NVX) systems is a runtime monitor that enables the execu-
tion of multiple versions in parallel.

Unfortunately, existing monitors impose either a large per-
formance overhead or rely on intrusive kernel-level changes.
Moreover, none of the existing solutions scales well with
the number of versions, since the runtime monitor acts as a
performance bottleneck.

In this paper, we introduce VARAN, an NVX framework
that combines selective binary rewriting with a novel event-
streaming architecture to significantly reduce performance
overhead and scale well with the number of versions, without
relying on intrusive kernel modifications.

Our evaluation shows that VARAN can run NVX systems
based on popular C10k network servers with only a modest
performance overhead, and can be effectively used to increase
software reliability using techniques such as transparent
failover, live sanitization and multi-revision execution.

Categories and Subject Descriptors D.4.5 [Operating Sys-
tems]: Reliability—Fault-tolerance

General Terms Reliability, Performance

Keywords N -version execution; selective binary rewriting;
event streaming; transparent failover; multi-revision execu-
tion; live sanitization; record-replay

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’15, March 14–18, 2015, Istanbul, Turkey.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2835-7/15/03. . . $15.00.
http://dx.doi.org/10.1145/2694344.2694390

1. Introduction
Recent years have seen a growing interest in using diversity
as a way to increase the reliability and security of software
systems. One form of software diversity that has attracted
significant interest from the research community is the idea
of running multiple diversified versions of a program in
parallel in order to survive bugs and detect security attacks
[5, 10, 13, 14, 40, 44, 48]. In essence, diversity can offer
probabilistic guarantees that at least one variant survives a
bug, or that a security attack will be flagged by divergent
behaviour across variants.1

On the security side, these diversified variants are con-
structed in such a way as to reduce the probability of an attack
succeeding in all of them. For example, one may generate
versions with stacks growing in opposite directions [40] to
prevent attacks whose success depends on the stack layout.

On the reliability side, which forms the main focus of
this paper, these diversified versions are either automatically-
generated variants, multiple revisions of the same application,
or different programs implementing the same interface. For
example, one may run in parallel multiple variants that em-
ploy complementary thread schedules to survive concurrency
errors [44], multiple versions of the same software to survive
update bugs [21], or multiple web browsers to benefit from
the fact that many errors do not affect all browser implemen-
tations [47]. In this paper, we show that running multiple
versions in parallel can be used in other reliability scenar-
ios, such as running expensive error detectors (“sanitizers”)
during deployment.

To enable these scenarios, a monitor process coordinates
the parallel execution of these variants and synchronises their
execution, making them appear as a single application to any
outside entities. While synchronisation can be performed
at different levels, the most common approach is to do it at
the level of system calls, for two main reasons: first, many
existing diversification transformations, such as the ones dis-
cussed above, do not change the sequence of system calls
(the program’s external behaviour), and the ordering is often
preserved even across different software revisions [21]. Sec-

1 The terms version and variant are used interchangeably.

339

58

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Evaluating Mvedsua

1. Number of rules needed

2. Steady-state overhead

3. Update overhead
I Performance in MVE
I Update pause

4. Errors detected/tolerated

59

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Mapping sematics
Number of Rules

VSFTPD

Versions # rules Versions # rules
1.1.0→ 1.1.1 — 2.0.0→ 2.0.1 —
1.1.1→ 1.1.2 2 2.0.1→ 2.0.2 1
1.1.2→ 1.1.3 — 2.0.2→ 2.0.3 1
1.1.3→ 1.2.0 2 2.0.3→ 2.0.4 1
1.2.0→ 1.2.1 — 2.0.4→ 2.0.5 1
1.2.1→ 1.2.2 — 2.0.5→ 2.0.6 —
1.2.2→ 2.0.0 3 Average 0.85

Redis: 2.0.0→ 2.0.1 (1 rule), 2.0.1→ 2.0.2, 2.0.1→ 2.0.3

Memcached: 1.2.2→ 1.2.3, 1.2.3→ 1.2.4

60

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Steady State Overhead
O

ve
rh

ea
d

vs
 n

at
iv

e

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Memcached Redis VSFTPD small VSFTPD large

Native Kitsune

61

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Steady State Overhead
O

ve
rh

ea
d

vs
 n

at
iv

e

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Memcached Redis VSFTPD small VSFTPD large

Native Kitsune Mᴠᴇᴅsᴜᴀ Steady-State

62

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Steady State Overhead
O

ve
rh

ea
d

vs
 n

at
iv

e

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Memcached Redis VSFTPD small VSFTPD large

Native Kitsune Mᴠᴇᴅsᴜᴀ Steady-State Mᴠᴇᴅsᴜᴀ Updating

63

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Steady State Overhead
O

ve
rh

ea
d

vs
 n

at
iv

e

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Memcached Redis VSFTPD small VSFTPD large

Native Kitsune Mᴠᴇᴅsᴜᴀ Steady-State Mᴠᴇᴅsᴜᴀ Updating
Varan Single Leader Varan Leader + 1 Follower

64

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Update Overhead (worst-case)
Redis with large state

0 60 120 180 240 300 360
seconds

0K

10K

20K

30K

40K

50K

60K
op

s/
se

c

Native
Kitsune
MVEDSUA

Update

Promote

Terminate
Follower

I 1M entries, 250MB resident process space
I Kitsune takes 5s to transform state
I Promote + terminate could happen early at 120s + (5s × 2)

65

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Update Overhead
Redis with large state — Zoom around update

120 125 130 135
seconds

0K

10K

20K

30K

40K

50K

60K

op
s/

se
c

Native
Kitsune
MVEDSUA

66

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Update Overhead
Redis with large state — Max latency

100

5040

117Mvedsua

Kitsune

Native

50x

1.17x

Redis Max Latency (ms)

67

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Mvedsua tolerates errors

I New code Redis revision 7fb16bac crashes on HMGET
I New version introduces error on existing HMGET command

I State transform Use-after-free for Memcached update
I Transformation logic frees memory used by libevent
I No problem for small number of threads/key-value pairs
I Crashes in production

I Timing Memcached and libevent after update
I libevent keeps round-robin list of active FDs
I Update reorders that list (resets all FDs)
I Divergence when order does not match pre-update

68

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Conclusion

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Software Updates are Disruptive
T
h
ro
u
g
h
p
u
t

Time

Version N

Update Available

7 Version N + 1

12

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Reliable Updates with Mvedsua

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N N → N + 1

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N N → N + 1 Version N + 1

Version N

Fork

Buffer
Requests

Drain
Requests

Compare
Requests

7

Child Updating
Parent provides service

39

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Mapping semantics
Command mappings

1. map old → new [put(k,v)] = put(string,k,v)

2. map old → new [put(string,k,v)] = not supported

3. map new → old [put(string,k,v)] = put(k,v)

4. map new → old [put(k,v)] = not supported

56 Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Steady State Overhead

1 1 1 1

1.03 0.99 1.05 1.021.09 1.06 1.08 1.03

1.52
1.42

1.25 1.25
1.06 1.08 1.03 1.02

1.5 1.44
1.24 1.25

O
ve

rh
ea

d
vs

 n
at

iv
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Memcached Redis VSFTPD small VSFTPD large

Native Kitsune Mvedsua 1 Mvedsua 2 Varan 1 Varan 2

61

69

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Conclusion

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Software Updates are Disruptive
T
h
ro
u
g
h
p
u
t

Time

Version N

Update Available

7 Version N + 1

12 Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Reliable Updates with Mvedsua

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N N → N + 1

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N N → N + 1 Version N + 1

Version N

Fork

Buffer
Requests

Drain
Requests

Compare
Requests

7

Child Updating
Parent provides service

39

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Mapping semantics
Command mappings

1. map old → new [put(k,v)] = put(string,k,v)

2. map old → new [put(string,k,v)] = not supported

3. map new → old [put(string,k,v)] = put(k,v)

4. map new → old [put(k,v)] = not supported

56 Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Steady State Overhead

1 1 1 1

1.03 0.99 1.05 1.021.09 1.06 1.08 1.03

1.52
1.42

1.25 1.25
1.06 1.08 1.03 1.02

1.5 1.44
1.24 1.25

O
ve

rh
ea

d
vs

 n
at

iv
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Memcached Redis VSFTPD small VSFTPD large

Native Kitsune Mvedsua 1 Mvedsua 2 Varan 1 Varan 2

61

70

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Conclusion

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Software Updates are Disruptive
T
h
ro
u
g
h
p
u
t

Time

Version N

Update Available

7 Version N + 1

12 Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Reliable Updates with Mvedsua

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N N → N + 1

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N N → N + 1 Version N + 1

Version N

Fork

Buffer
Requests

Drain
Requests

Compare
Requests

7

Child Updating
Parent provides service

39

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Mapping semantics
Command mappings

1. map old → new [put(k,v)] = put(string,k,v)

2. map old → new [put(string,k,v)] = not supported

3. map new → old [put(string,k,v)] = put(k,v)

4. map new → old [put(k,v)] = not supported

56

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Steady State Overhead

1 1 1 1

1.03 0.99 1.05 1.021.09 1.06 1.08 1.03

1.52
1.42

1.25 1.25
1.06 1.08 1.03 1.02

1.5 1.44
1.24 1.25

O
ve

rh
ea

d
vs

 n
at

iv
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Memcached Redis VSFTPD small VSFTPD large

Native Kitsune Mvedsua 1 Mvedsua 2 Varan 1 Varan 2

61

71

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Conclusion

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Software Updates are Disruptive
T
h
ro
u
g
h
p
u
t

Time

Version N

Update Available

7 Version N + 1

12 Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Reliable Updates with Mvedsua

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N N → N + 1

Version N

Multi-Version Execution (MVE)

Shared Mem
Buffer

Version N N → N + 1 Version N + 1

Version N

Fork

Buffer
Requests

Drain
Requests

Compare
Requests

7

Child Updating
Parent provides service

39

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Mapping semantics
Command mappings

1. map old → new [put(k,v)] = put(string,k,v)

2. map old → new [put(string,k,v)] = not supported

3. map new → old [put(string,k,v)] = put(k,v)

4. map new → old [put(k,v)] = not supported

56 Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Steady State Overhead

1 1 1 1

1.03 0.99 1.05 1.021.09 1.06 1.08 1.03

1.52
1.42

1.25 1.25
1.06 1.08 1.03 1.02

1.5 1.44
1.24 1.25

O
ve

rh
ea

d
vs

 n
at

iv
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Memcached Redis VSFTPD small VSFTPD large

Native Kitsune Mvedsua 1 Mvedsua 2 Varan 1 Varan 2

61

72

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Looking for students!

73

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Conclusion

I Software updates are disruptive at best, catastrophic at worst
I DSU helps, but updates can still fail

I Mvedsua performs DSU reliabily using MVE
I Great single-version performance
I Eliminates update pauses
I Tolerates update errors

I Non-backwards-compatible features require new-to-old and
old-to-new command mappings
I Not always possible to write

I I’m looking for students!

74

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Extra Slides

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Update by dumping to disk and restarting
I 10GB Redis takes 28s vs 22s with Kitsune (21ms opt)
I 1M entries (2GB) takes 5s vs 3.5s with Kitsune (22ms opt)

A

Kitsune: Efficient, General-purpose Dynamic Software Updating for C

Christopher M. Hayden, University of Maryland, College Park
Karla Saur, University of Maryland, College Park
Edward K. Smith, University of Maryland, College Park
Michael Hicks, University of Maryland, College Park
Jeffrey S. Foster, University of Maryland, College Park

Dynamic software updating (DSU) systems facilitate software updates to running programs, thereby per-
mitting developers to add features and fix bugs without downtime. This paper introduces Kitsune, a DSU
system for C. Kitsune’s design has three notable features. First, Kitsune updates the whole program, rather
than individual functions, using a mechanism that places no restrictions on data representations or allowed
compiler optimizations. Second, Kitsune makes the important aspects of updating explicit in the program
text, making the program’s semantics easy to understand while minimizing programmer effort. Finally, the
programmer can write simple specifications to direct Kitsune to generate code that traverses and trans-
forms old-version state for use by new code; such state transformation is often necessary and is significantly
more difficult in prior DSU systems. We have used Kitsune to update six popular, open-source, single- and
multi-threaded programs, and find that few program changes are required to use Kitsune, that it incurs
essentially no performance overhead, and that update times are fast.

Categories and Subject Descriptors: C.4 [Performance of Systems]: Reliability, availability, and service-
ability

General Terms: Design, Languages

Additional Key Words and Phrases: dynamic software updating

ACM Reference Format:
Christopher M. Hayden, Karla Saur, Edward K. Smith, Michael Hicks, and Jeffrey S. Foster. 2014. Kitsune:
Efficient, General-purpose Dynamic Software Updating for C ACM T Progr Lang Sys V, N, Article A (January
YYYY), 38 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Running software systems without incurring downtime is very important in today’s
24/7 world. Dynamic software updating (DSU) services can update programs with new
code—to fix bugs or add features—without shutting them down. The research commu-
nity has shown that general-purpose DSU is feasible: systems that support dynamic
upgrades to running C, C++, and Java programs have been applied to dozens of realis-
tic applications, tracking changes according to those applications’ release histories [Al-
tekar et al. 2005; Chen et al. 2011; Hayden et al. 2011; Hicks and Nettles 2005; Makris
and Bazzi 2009; Makris and Ryu 2007; Neamtiu and Hicks 2009; Neamtiu et al. 2006;

This research was supported in part by NSF grant CCF-0910530 and the partnership between UMIACS and
the Laboratory for Telecommunication Sciences.
Author’s addresses: Dept. of Computer Science University of Maryland A.V. Williams Building College Park,
MD 20742
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1539-9087/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

I 1GB H2 takes 13s vs 3s with Rubah

Rubah: Efficient, General-purpose Dynamic Software Updating for Java

Luı́s Pina∗

INESC-ID / Instituto Superior Técnico
Lisbon, Portugal

Michael Hicks
University of Maryland

College Park, USA

Abstract
This paper presents Rubah, a new dynamic software up-
dating (DSU) system for Java programs that works on
stock JVMs. Rubah supports a large range of program
changes (e.g., changes to the class hierarchy and up-
dates to running methods), does not restrict important
programming idioms (e.g., reflection), and, as shown by
performance experiments using an updatable version of
the H2 database management system, imposes low over-
head on normal execution.

1 Introduction

Dynamic software updating (DSU) frameworks are used
to update programs while they run. Of particular inter-
est to us are DSU frameworks that support nearly arbi-
trary program changes: in addition to changes to method
code (as commonly supported by Java and .NET VMs)
we would like to add and remove methods and fields,
change their types, and even change a class’s superclass
and implemented interfaces. Such support is needed to
facilitate dynamic updates corresponding to full releases,
rather than simple (e.g., security) patches.

In the past, such highly flexible DSU services have
been implemented in two ways: as a bytecode-to-
bytecode transformation, or via an enhanced JVM.
The appeal of the former approach is that it is JVM-
independent, and so DSU services are not restricted to a
particular platform. Most existing transformations work
by introducing one or more proxy objects per applica-
tion object whereby a dynamic update redirects a proxy
to point to the new object version [9, 10]. This approach
has several significant drawbacks. First, it can break ap-
plication semantics and therefore restricts certain useful
programming idioms; e.g., uses of reflection could re-
veal the presence of proxy objects and are thus forbid-

∗This work was performed while this author was visiting the Uni-
versity of Maryland.

den. Second, and perhaps more importantly, proxy ob-
jects can add significant overhead to normal execution,
e.g., up to 50%. This overhead is too high for practi-
cal use. The alternative of using a specialized VM, like
the JVolve VM [11], can avoid such performance over-
heads and semantic restrictions (though Jvolve in partic-
ular does not support some dynamic updates, e.g., class
hierarchy alterations). But a specialized VM limits adop-
tion.

In this work-in-progress paper we present Rubah, a
new transformation-based DSU framework for Java. Our
goal in building Rubah is to retain the portability ben-
efits of transformation-based techniques while avoiding
their high overhead and semantic restrictions. We have
done this by avoiding the use of proxy classes altogether:
when a new dynamic update becomes available, we dy-
namically load the new versions of added or changed
classes, and then perform what amounts to a full garbage
collection (GC) of the program to locate and update
all instances of affected classes. This approach is in-
spired by Jvolve, which employs a modified version of
the VM’s actual GC. To avoid changing the VM, Rubah
instead introduces an application-level GC-style traver-
sal implemented using reflection and some class-level
rewriting. Rubah also borrows ideas from the recent Kit-
sune DSU system for C programs [6] to support updates
to actively running methods (e.g., those running infinite
loops) by requiring the programmer to make some sim-
ple changes to use the Rubah API.

We have implemented Rubah and evaluated it on H2,
an SQL DBMS written in Java. So far we have imple-
mented two full updates to H2. Using the TPC-C bench-
mark from the DaCapo benchmark suite [1], we con-
firm that the benchmark completes correctly even when
H2 is updated midstream, and that Rubah adds about
8% overhead to normal execution, far less than prior
transformation-based approaches. On the other hand,
the pause that Rubah induces while the transformation
takes place is currently prohibitively high, on the order

76

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Mapping semantics
Sample rule

01 read(fd,s,n) {{ return strstr("put",s) == 0; }}
02 =>
03 read(fd,ss,n)
04

{{

05

sscanf(s,"put(%s,%s)",&k,&v);

06

sprintf(ss,"put(string,%s,%s)",k,v);

07

}}

08

{{ ret += 6; }}

A DSL Approach to Reconcile Equivalent Divergent Program Executions

Luı́s Pina Daniel Grumberg Anastasios Andronidis Cristian Cadar
Department of Computing

Imperial College London, UK
{l.pina, daniel.grumberg14, a.andronidis15, c.cadar}@imperial.ac.uk

Abstract

Multi-Version Execution (MVE) deploys multiple ver-
sions of the same program, typically synchronizing their
execution at the level of system calls. By default, MVE
requires all deployed versions to issue the same sequence
of system calls, which limits the types of versions which
can be deployed.

In this paper, we propose a Domain-Specific Lan-
guage (DSL) to reconcile expected divergences between
different program versions deployed through MVE. We
evaluate the DSL by adding it to an existing MVE sys-
tem (Varan) and testing it via three scenarios: (1) de-
ploying the same program under different configurations,
(2) deploying different releases of the same program, and
(3) deploying dynamic analyses in parallel with the na-
tive execution. We also present an algorithm to automat-
ically extract DSL rules from pairs of system call traces.
Our results show that each scenario requires a small num-
ber of simple rules (at most 14 rules in each case) and that
writing DSL rules can be partially automated.

1 Introduction

Multi-version execution (MVE) has seen a revival in re-
cent years as a mechanism to increase software security
and reliability [13, 18, 20, 22, 29, 34, 35]. At a high-level,
MVE works by running multiple versions of a program
in parallel, synchronizing their execution typically at the
level of system calls. In a security context, one can run
diversified program variants (e.g., where each variant has
a different memory layout) in such a way that diver-
gences across variants signal a security attack [29, 34].
In a reliability context, one can run diversified variants or
multiple software revisions and allow the overall applica-
tion to continue execution when versions crash [18, 19].

In its initial instantiation, MVE employs a monitor
process that intercepts all the system calls issued by the
underlying versions. When all versions issue the same

system call, the monitor executes the system call once
on behalf of all versions, and copies the results to each
version. If any version diverges, i.e. issues a different
system call, the monitor raises a warning and stops exe-
cuting (in a security context) or terminates the divergent
versions and MVE continues with fewer versions (in a
reliability context).

There are two main issues with this simple form of
MVE. First, executing system calls from all versions in
lock-step imposes a large performance penalty. Second,
this form of MVE relies on all versions issuing the same
sequence of system calls. The latter issue is particularly
problematic because it limits the types of versions that
can be run with MVE. For instance, the diversified vari-
ants cannot issue different but equivalent sequences of
system calls (e.g., those arising due to refactoring), and
the MVE system cannot ignore additional system calls
(e.g., that one version may use for extra logging).

A new architecture, recently introduced by Varan [19],
tackles both issues. In the proposed scheme, which re-
sembles an in-memory record-replay framework, there
is no central monitor. Instead, one of the versions acts
as the leader and executes system calls directly, writing
their results into a shared ring buffer. The other ver-
sions, followers, simply read back the results from the
ring buffer (faster followers always wait for the leader).
In terms of performance, Varan allows the leader to run
at almost native speed, as it does not require the leader
to synchronize with the followers. While Varan provides
flexibility in terms of matching the sequences of system
calls issued by different versions, it does not provide an
easy expressive way to encode the differences in system
call sequences that should be tolerated across versions.

In this paper, we propose a simple, elegant, and ex-
pressive domain-specific language (DSL) specifically de-
signed for writing system call matching rules that allows
a follower to reconcile its sequence of system calls with
that of the leader (§3). We show that this DSL allows
the use of MVE in a wider range of scenarios with mini-

1

77

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Mapping semantics
Sample rule

01 read(fd,s,n) {{ return strstr("put",s) == 0; }}
02 =>
03 read(fd,ss,n)
04 {{
05 sscanf(s,"put(%s,%s)",&k,&v);
06

sprintf(ss,"put(string,%s,%s)",k,v);

07 }}
08

{{ ret += 6; }}

A DSL Approach to Reconcile Equivalent Divergent Program Executions

Luı́s Pina Daniel Grumberg Anastasios Andronidis Cristian Cadar
Department of Computing

Imperial College London, UK
{l.pina, daniel.grumberg14, a.andronidis15, c.cadar}@imperial.ac.uk

Abstract

Multi-Version Execution (MVE) deploys multiple ver-
sions of the same program, typically synchronizing their
execution at the level of system calls. By default, MVE
requires all deployed versions to issue the same sequence
of system calls, which limits the types of versions which
can be deployed.

In this paper, we propose a Domain-Specific Lan-
guage (DSL) to reconcile expected divergences between
different program versions deployed through MVE. We
evaluate the DSL by adding it to an existing MVE sys-
tem (Varan) and testing it via three scenarios: (1) de-
ploying the same program under different configurations,
(2) deploying different releases of the same program, and
(3) deploying dynamic analyses in parallel with the na-
tive execution. We also present an algorithm to automat-
ically extract DSL rules from pairs of system call traces.
Our results show that each scenario requires a small num-
ber of simple rules (at most 14 rules in each case) and that
writing DSL rules can be partially automated.

1 Introduction

Multi-version execution (MVE) has seen a revival in re-
cent years as a mechanism to increase software security
and reliability [13, 18, 20, 22, 29, 34, 35]. At a high-level,
MVE works by running multiple versions of a program
in parallel, synchronizing their execution typically at the
level of system calls. In a security context, one can run
diversified program variants (e.g., where each variant has
a different memory layout) in such a way that diver-
gences across variants signal a security attack [29, 34].
In a reliability context, one can run diversified variants or
multiple software revisions and allow the overall applica-
tion to continue execution when versions crash [18, 19].

In its initial instantiation, MVE employs a monitor
process that intercepts all the system calls issued by the
underlying versions. When all versions issue the same

system call, the monitor executes the system call once
on behalf of all versions, and copies the results to each
version. If any version diverges, i.e. issues a different
system call, the monitor raises a warning and stops exe-
cuting (in a security context) or terminates the divergent
versions and MVE continues with fewer versions (in a
reliability context).

There are two main issues with this simple form of
MVE. First, executing system calls from all versions in
lock-step imposes a large performance penalty. Second,
this form of MVE relies on all versions issuing the same
sequence of system calls. The latter issue is particularly
problematic because it limits the types of versions that
can be run with MVE. For instance, the diversified vari-
ants cannot issue different but equivalent sequences of
system calls (e.g., those arising due to refactoring), and
the MVE system cannot ignore additional system calls
(e.g., that one version may use for extra logging).

A new architecture, recently introduced by Varan [19],
tackles both issues. In the proposed scheme, which re-
sembles an in-memory record-replay framework, there
is no central monitor. Instead, one of the versions acts
as the leader and executes system calls directly, writing
their results into a shared ring buffer. The other ver-
sions, followers, simply read back the results from the
ring buffer (faster followers always wait for the leader).
In terms of performance, Varan allows the leader to run
at almost native speed, as it does not require the leader
to synchronize with the followers. While Varan provides
flexibility in terms of matching the sequences of system
calls issued by different versions, it does not provide an
easy expressive way to encode the differences in system
call sequences that should be tolerated across versions.

In this paper, we propose a simple, elegant, and ex-
pressive domain-specific language (DSL) specifically de-
signed for writing system call matching rules that allows
a follower to reconcile its sequence of system calls with
that of the leader (§3). We show that this DSL allows
the use of MVE in a wider range of scenarios with mini-

1

78

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Mapping semantics
Sample rule

01 read(fd,s,n) {{ return strstr("put",s) == 0; }}
02 =>
03 read(fd,ss,n)
04 {{
05 sscanf(s,"put(%s,%s)",&k,&v);
06 sprintf(ss,"put(string,%s,%s)",k,v);
07 }}
08

{{ ret += 6; }}

A DSL Approach to Reconcile Equivalent Divergent Program Executions

Luı́s Pina Daniel Grumberg Anastasios Andronidis Cristian Cadar
Department of Computing

Imperial College London, UK
{l.pina, daniel.grumberg14, a.andronidis15, c.cadar}@imperial.ac.uk

Abstract

Multi-Version Execution (MVE) deploys multiple ver-
sions of the same program, typically synchronizing their
execution at the level of system calls. By default, MVE
requires all deployed versions to issue the same sequence
of system calls, which limits the types of versions which
can be deployed.

In this paper, we propose a Domain-Specific Lan-
guage (DSL) to reconcile expected divergences between
different program versions deployed through MVE. We
evaluate the DSL by adding it to an existing MVE sys-
tem (Varan) and testing it via three scenarios: (1) de-
ploying the same program under different configurations,
(2) deploying different releases of the same program, and
(3) deploying dynamic analyses in parallel with the na-
tive execution. We also present an algorithm to automat-
ically extract DSL rules from pairs of system call traces.
Our results show that each scenario requires a small num-
ber of simple rules (at most 14 rules in each case) and that
writing DSL rules can be partially automated.

1 Introduction

Multi-version execution (MVE) has seen a revival in re-
cent years as a mechanism to increase software security
and reliability [13, 18, 20, 22, 29, 34, 35]. At a high-level,
MVE works by running multiple versions of a program
in parallel, synchronizing their execution typically at the
level of system calls. In a security context, one can run
diversified program variants (e.g., where each variant has
a different memory layout) in such a way that diver-
gences across variants signal a security attack [29, 34].
In a reliability context, one can run diversified variants or
multiple software revisions and allow the overall applica-
tion to continue execution when versions crash [18, 19].

In its initial instantiation, MVE employs a monitor
process that intercepts all the system calls issued by the
underlying versions. When all versions issue the same

system call, the monitor executes the system call once
on behalf of all versions, and copies the results to each
version. If any version diverges, i.e. issues a different
system call, the monitor raises a warning and stops exe-
cuting (in a security context) or terminates the divergent
versions and MVE continues with fewer versions (in a
reliability context).

There are two main issues with this simple form of
MVE. First, executing system calls from all versions in
lock-step imposes a large performance penalty. Second,
this form of MVE relies on all versions issuing the same
sequence of system calls. The latter issue is particularly
problematic because it limits the types of versions that
can be run with MVE. For instance, the diversified vari-
ants cannot issue different but equivalent sequences of
system calls (e.g., those arising due to refactoring), and
the MVE system cannot ignore additional system calls
(e.g., that one version may use for extra logging).

A new architecture, recently introduced by Varan [19],
tackles both issues. In the proposed scheme, which re-
sembles an in-memory record-replay framework, there
is no central monitor. Instead, one of the versions acts
as the leader and executes system calls directly, writing
their results into a shared ring buffer. The other ver-
sions, followers, simply read back the results from the
ring buffer (faster followers always wait for the leader).
In terms of performance, Varan allows the leader to run
at almost native speed, as it does not require the leader
to synchronize with the followers. While Varan provides
flexibility in terms of matching the sequences of system
calls issued by different versions, it does not provide an
easy expressive way to encode the differences in system
call sequences that should be tolerated across versions.

In this paper, we propose a simple, elegant, and ex-
pressive domain-specific language (DSL) specifically de-
signed for writing system call matching rules that allows
a follower to reconcile its sequence of system calls with
that of the leader (§3). We show that this DSL allows
the use of MVE in a wider range of scenarios with mini-

1

79

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Mapping semantics
Sample rule

01 read(fd,s,n) {{ return strstr("put",s) == 0; }}
02 =>
03 read(fd,ss,n)
04 {{
05 sscanf(s,"put(%s,%s)",&k,&v);
06 sprintf(ss,"put(string,%s,%s)",k,v);
07 }}
08 {{ ret += 6; }}

A DSL Approach to Reconcile Equivalent Divergent Program Executions

Luı́s Pina Daniel Grumberg Anastasios Andronidis Cristian Cadar
Department of Computing

Imperial College London, UK
{l.pina, daniel.grumberg14, a.andronidis15, c.cadar}@imperial.ac.uk

Abstract

Multi-Version Execution (MVE) deploys multiple ver-
sions of the same program, typically synchronizing their
execution at the level of system calls. By default, MVE
requires all deployed versions to issue the same sequence
of system calls, which limits the types of versions which
can be deployed.

In this paper, we propose a Domain-Specific Lan-
guage (DSL) to reconcile expected divergences between
different program versions deployed through MVE. We
evaluate the DSL by adding it to an existing MVE sys-
tem (Varan) and testing it via three scenarios: (1) de-
ploying the same program under different configurations,
(2) deploying different releases of the same program, and
(3) deploying dynamic analyses in parallel with the na-
tive execution. We also present an algorithm to automat-
ically extract DSL rules from pairs of system call traces.
Our results show that each scenario requires a small num-
ber of simple rules (at most 14 rules in each case) and that
writing DSL rules can be partially automated.

1 Introduction

Multi-version execution (MVE) has seen a revival in re-
cent years as a mechanism to increase software security
and reliability [13, 18, 20, 22, 29, 34, 35]. At a high-level,
MVE works by running multiple versions of a program
in parallel, synchronizing their execution typically at the
level of system calls. In a security context, one can run
diversified program variants (e.g., where each variant has
a different memory layout) in such a way that diver-
gences across variants signal a security attack [29, 34].
In a reliability context, one can run diversified variants or
multiple software revisions and allow the overall applica-
tion to continue execution when versions crash [18, 19].

In its initial instantiation, MVE employs a monitor
process that intercepts all the system calls issued by the
underlying versions. When all versions issue the same

system call, the monitor executes the system call once
on behalf of all versions, and copies the results to each
version. If any version diverges, i.e. issues a different
system call, the monitor raises a warning and stops exe-
cuting (in a security context) or terminates the divergent
versions and MVE continues with fewer versions (in a
reliability context).

There are two main issues with this simple form of
MVE. First, executing system calls from all versions in
lock-step imposes a large performance penalty. Second,
this form of MVE relies on all versions issuing the same
sequence of system calls. The latter issue is particularly
problematic because it limits the types of versions that
can be run with MVE. For instance, the diversified vari-
ants cannot issue different but equivalent sequences of
system calls (e.g., those arising due to refactoring), and
the MVE system cannot ignore additional system calls
(e.g., that one version may use for extra logging).

A new architecture, recently introduced by Varan [19],
tackles both issues. In the proposed scheme, which re-
sembles an in-memory record-replay framework, there
is no central monitor. Instead, one of the versions acts
as the leader and executes system calls directly, writing
their results into a shared ring buffer. The other ver-
sions, followers, simply read back the results from the
ring buffer (faster followers always wait for the leader).
In terms of performance, Varan allows the leader to run
at almost native speed, as it does not require the leader
to synchronize with the followers. While Varan provides
flexibility in terms of matching the sequences of system
calls issued by different versions, it does not provide an
easy expressive way to encode the differences in system
call sequences that should be tolerated across versions.

In this paper, we propose a simple, elegant, and ex-
pressive domain-specific language (DSL) specifically de-
signed for writing system call matching rules that allows
a follower to reconcile its sequence of system calls with
that of the leader (§3). We show that this DSL allows
the use of MVE in a wider range of scenarios with mini-

1

80

Pina, Andronidis, Hicks, Cadar. Mvedsua: Higher Availability DSU via MVE. ASPLOS 2019

Mapping semantics
MVE

Old Version

New Version

s

snew

transform(k,v) = (string,k,v)

put(k,v)

put(k,v)put(string,k,v)

map

put(string,k,v)

put(string,k,v)not supported

map

put(string,k,v)

put(k,v)

mapnew→old

put(int,k,v)

7impossible

mapnew→old

81

