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Abstract—In this paper, we propose the use of a Software
Transactional Memory to implement a Dynamic Software
Upgrade system that combines two desirable properties. First,
it provides a simple semantics to the developer, while allowing
upgrades to occur atomically, concurrently with the execution
of the program. Second, it converts the program’s data lazily, as
data is progressively accessed by the execution of the upgraded
program.

We present also experimental results that show that our lazy
approach to software upgrades is able to upgrade a system
without affecting significantly the maximum response time
of the system’s operations, whereas an immediate approach
shows values of maximum response time up to three orders of
magnitude higher.

Keywords-dynamic software upgrades, software transactional
memory, atomic upgrades

I. INTRODUCTION

A practical dynamic upgrade system must provide means
for the developer to convert the program state from the
current executing program to an equivalent state compatible
with the new program. Existing dynamic upgrade systems
expose to the developer the exact moment when such a
conversion takes place and support either immediate up-
grades, converting all the program state when the upgrade
is installed, or lazy upgrades, converting each portion of the
program state as the natural flow of execution touches it for
the first time after an upgrade is installed.

Immediate upgrades are simpler to the developer. The
program is always running only one version except when
converting the program state. Developers just have to address
this scenario when writing conversion code.

Despite their simplicity, immediate upgrades pause the
program’s execution to install an upgrade and convert all
the program state. A long enough pause resembles stopping
and restarting a program and may thus defeat the whole
purpose of a dynamic upgrade system. This is where lazy
upgrades come in: The long pause is diluted over the normal
program execution after installing an upgrade.

Lazy upgrade semantics, however, are more complex than
immediate upgrade semantics. A lazy upgraded system runs
a mixture of program versions after an upgrade, which
can be confusing for the developer: What happens if the
conversion code tries to access a portion of the program’s
state that was already converted?

In this paper, we show how to provide immediate upgrade
semantics to the developer writing the conversion code
whilst converting the program state lazily. We describe a
novel technique that uses a Software Transactional Memory
to execute the conversion code in the logical past, ensuring
its correctness according to the atomic upgrade semantics,
which we also present.

We implemented our approach in Java, resulting on a
prototype called DuST’M, described in greater detail else-
where [10], which was used to perform an experimental
evaluation that compares immediate with lazy state con-
version. This is, to the best of our knowledge, the first
experimental evaluation that compares the two techniques.
Our evaluation shows that immediate conversion introduces
a pause that grows with the size of the program’s state, and
that can increase the maximum response time up to three
orders of magnitude. On the other hand, our lazy approach
keeps a constant maximum response time, regardless of
the size of the program’s state. However, the lazy state
conversion technique introduces a steady state overhead that
we measured to be between 18% and 37%.

The rest of this paper is structured as follows: In Sec-
tion II, we describe the atomic upgrade semantics that
we propose. In Section III, we describe how the atomic
upgrade semantics can be implemented using a versioned
STM. In Section IV, we show the results of an experimental
performance evaluation. In Section V, we discuss the related
work. Finally, in Section VI, we conclude.

II. UPGRADE SEMANTICS

Throughout the rest of this paper, we assume that the
upgradable application follows the model that we describe
here. We assume that the upgradable application delimits
transactions around its operations. We believe that upgrade
safe-points — points where an application can be stopped to
apply an upgrade and safely resume execution on the new
program version — are intrinsically related to the atomicity
of operations and that, therefore, transactions are the easiest
and safest way for specifying safe-points. For this reason,
DuST’M ensures that every transaction finishes in the same
program version in which it started, and that upgrades appear
to occur atomically with respect to all other transactions
executing in the system.
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Figure 1. Immediate (top) and Lazy (bottom) Upgrade Semantics.

Moreover, we consider that the application is composed
by upgradable types and non-upgradable types: Upgradable
types encompass all the classes written by the program’s
developers, whereas non-upgradable types correspond to
types belonging either to the Java platform or to third-
party libraries that developers do not expect to upgrade
dynamically. So, we assume that the classes implementing
the upgrade system itself are non-upgradable.

To illustrate DuST’M’s flexibility, consider the case where
class A is non-upgradable, both classes B and C are upgrad-
able, and class A is the superclass of B, which in turn is the
superclass of C. We call class A the non-upgradable root of
all of its subclasses (in this case, classes B and C). DuST’M
supports any modification to classes B and C as long as
they retain the same non-upgradable root. For instance, an
upgrade can make class C the superclass of B provided that
class C continues to be a subclass of A.

A dynamic upgrade system that supports program state
migration may perform such migration eagerly, when the
new upgrade is installed. This behaviour is what we call
immediate upgrades. To illustrate immediate upgrade se-
mantics, consider the example that Figure 1 shows on its
top half. A geometric application represents points and
rectangles. Each rectangle is represented as two points: The
top left corner and the bottom right corner. Version 1 of the
geometry application starts executing. Then, a transaction
Tx1 creates a rectangle (and the respective two points). After
that, the application is upgraded, thus installing version 2.
With immediate upgrade semantics, transaction Tx2 finds
instances of only version 2 of the program.

A naı̈ve eager immediate upgrade semantics converts all
the program state after installing the upgrade, pausing the
application while the conversion is taking place. This may
be very costly and introduce a long pause in the program’s
execution. An alternative is to convert the program state
lazily, converting each instance only when the new version
of the program attempts to access it. The upgrade system
does not need to perform such conversion sooner, and is
free to delay every conversion to the last possible moment.

The bottom half of Figure 1 shows the same sequence
of events previously described, but on an upgrade system
that converts the program state lazily. Now, each object is
converted when transaction Tx2 first manipulates it.

Yet, lazy upgrade semantics is more complex than the
immediate upgrade semantics, because, after installing an
upgrade, the system may have a mixture of both old and

new versions. This may lead to unexpected behaviour. For
instance, consider what happens when a point is converted
before the rectangle, but the conversion code of the rectangle
expects both points to be in the old version. In this case we
have a problem, known as the conversion ordering problem,
because each point is now on a different program version.
DuST’M solves this problem by resorting to a multi-version
Software Transactional Memory system.

After an upgrade takes place, when a transaction T
attempts to use an unconverted object, DuST’M pauses T
and launches a special conversion transaction T ′ to convert
that object. Transaction T resumes after T ′ finishes and
accesses the converted object. Every conversion transaction
T ′ occurs logically before the transaction T that triggers it.

In fact, even though DuST’M converts the program state
lazily, the conversion code executes logically at the exact
moment after the upgrade, meaning that DuST’M exposes
an immediate upgrade semantics to the developer. A similar
semantics was previously introduced by Boyapati et al. [2]
in the context of object-oriented database upgrades.

The atomic upgrade semantics naturally solves the con-
version ordering problem. Consider that transaction Tx1
starts immediately after an upgrade, triggers the conversion
of a point, and commits. Soon after, transaction Tx3 starts
and attempts to manipulate the rectangle, thus triggering
its conversion. The conversion transaction executes at the
logical past, before transaction Tx1 had executed. At this
logical time instant, the conversion code is still able to access
both points in the old program version.

III. IMPLEMENTATION

DuST’M [10] implements the atomic semantics for the
Java programming language using a runtime library and a
bytecode post-processor that introduces an extra level of
indirection, thus replacing all upgradable types’ references
by handles. When dereferencing a handle h, DuST’M checks
if the object that h keeps must be converted.

The bytecode transformation keeps the original program’s
semantics. Even though we do not provide any formal
proof of this statement, we were able to transform two
representative programs that generate a deterministic output:
Sunflow, 1 a ray-tracer, and Avrora, 2 a AVR microchip
simulator. Both programs generate the same output, after
transforming them, on several different inputs. We omit
most of DuST’M’s implementation details due to space
restrictions. They are available elsewhere [10].

DuST’M implements the atomic upgrade semantics by
taking advantage of JVSTM’s versioning [3]: It keeps the
old versions of the migrated objects after converting them.
JVSTM transactional locations (VBoxes) perform version-
ing to enforce isolation between concurrent transactions.

1http://sunflow.sourceforge.net/
2http://compilers.cs.ucla.edu/avrora/



DuST’M uses such versions to ensure that the conversion
code, running in the logical past, can access every object in
the expected program version. For instance, DuST’M solves
the conversion ordering problem on the previous section by
keeping both the old and the converted instances of the point
after transaction Tx1 finishes. DuST’M would then ensure
that transaction Tx2 always manipulates the new version of
the point and that the conversion code always manipulates
the old version of the point.

DuST’M is always able to install upgrades, even if there
are transactions running code that is upgraded. In that case,
those old transactions keep executing in the old program
version. New transactions execute on the new program
version. Whether old transactions will be allowed to commit
when they finish is a different question.

DuST’M requires the developer to identify transactions
boundaries in the upgradable application. However, it does
not require the developer to use JVSTM for anything else.
Yet, we must consider how conversion transactions interplay
with non-upgradable types. Consider the following sequence
of events: DuST’M installs an upgrade, transaction Tx1
writes to non-upgradable instance ω and commits, transac-
tion Tx2 starts and triggers a conversion transaction TR for
a rectangle, and transaction TR reads instance ω.

According to the atomic upgrade semantics, transaction
TR must read the value of instance ω that existed before
transaction Tx1 executed. If instance ω is transactional, i.e.
implemented using JVSTM, transaction TR accesses the cor-
rect value of ω. However, if instance ω is not transactional,
the conversion transaction accesses the most recent value of
instance ω, thus violating the atomic upgrade semantics. All
non-upgradable objects accessed inside conversion transac-
tions must be either transactional or immutable.

Just adding JVSTM transactions to an existing application
does not add any extra overhead to its execution: The
overhead in JVSTM results from keeping the shared state
consistent inside each transaction, and not from starting and
stopping the transaction itself.

IV. PERFORMANCE EVALUATION

Immediate upgrades and lazy upgrades offer different
performance trade-offs: Immediate upgrades can be imple-
mented with virtually no steady state overhead [11], [12],
but they must pause the application to convert the program
state. The length of such a pause gets longer by increasing
the size of the program state. Lazy upgrades, on the other
hand, can install upgrades without imposing any noticeable
pause, but they introduce steady state overhead.

A long pause resembles restarting the program on the new
version, which defeats the purpose of a dynamic upgrade
system. However, high steady state overhead seriously com-
promises the normal operation of the system. The decision
between immediate or lazy upgrades must be carefully
balanced and well informed.
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Figure 2. Throughput tracing at each second. The line Normal refers to the
benchmark without being post-processed by DuST’M, line DuST’M refers
to the post-processed benchmark without installing any upgrade, lines lazy
and immediate refer to installing one upgrade at 90 seconds and using lazy
or immediate upgrade semantics, respectively.

To that end, we evaluated the overhead that DuST’M
introduces on STMBench7 [5]. In STMBench7, it is possible
to reach every instance starting from a single global static
reference. This feature allowed us to compare DuST’M
results against immediate upgrade systems: We implemented
an immediate upgrade mode in which DuST’M suspends all
threads after installing a new program version, converts all
STMBench7 instances, and, after converting all instances,
resumes STMBench7’s execution.

STMBench7 is a synthetic benchmark for evaluating STM
implementations. It builds a set of graphs that simulate
how real-world applications structure their objects. Then, it
traverses the graphs using several operations that resemble
how real-world applications navigate through their objects.

STMBench7 is highly configurable. We obtained all the
results using a JVSTM backend and configured STMBench7
to run a read-write workload with 1 and 4 threads.

When running STMBench7, we disabled two types of op-
erations: (1) long traversals and (2) structural modifications.
Our JVSTM implementation of STMBench7 builds huge
read-sets on long traversals, which stress the garbage collec-
tion mechanism and thus generates unacceptable amounts of
noise on the final results. Likewise, we disabled structural
modifications because they delete a large part of the object
graphs, resulting in non significant conversion times when
running the immediate conversion mode.

STMBench7 tracks how many operations were completed,
on average, per second. We modified it to report, at each
second, how many operations completed during that second.
Then, we ran the benchmark 15 times and registered the
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Figure 3. Maximum latency observed for operations whose behaviour
does not depend on the total number of instances.

average value of completed operations per each second. We
executed the benchmark on an Intel Core i5 750 processor (4
cores) with 8GB RAM, running a 64-bit Linux 2.6.36, and
Java SE version 1.6.0 24 (Java HotSpot 64-Bit Server VM,
build 19.1-b02, mixed mode). To measure the throughput
overhead in steady state, we ran the benchmark without
installing any upgrade using two versions: One unmodified
and another post-processed by DuST’M. Figure 2 shows all
the measured results. We registered an average overhead of
18% for 4 threads and 37% for 1 thread.

STMBench7 also tracks the maximum latency of each
operation. To find how the pause length scales with the total
amount of instances, we modified STMBench7 so that it
uses more instances by multiplying the total number of a
common instance type by a factor of 5, 10, and 20. We ran
this test on a machine with 4 AMD Opteron 6168 CPUs
(48 cores in total) and 128GB of memory, running a 64-bit
Linux 2.6.32, and Java SE version 1.6.0 22 (Java HotSpot
64-Bit Server VM, build 17.1-b03).

STMBench7 executes several operations that traverse a
portion of all the existing objects. Increasing the total num-
ber of instances modifies the behaviour of such operations.
To assess the pause that dynamic upgrades impose, we reg-
istered the maximum latency of operations whose behaviour
remains constant despite increasing the total number of
instances that the benchmark uses. We executed STMBench7
for 270 seconds, installing an upgrade at 90 seconds, and
registered the maximum latency observed on 10 executions.
Figure 3 shows those results. As expected for immediate
state conversion, the maximum latency increases with the
total number of instances. On the other hand, lazy state
conversion has almost no effect on the maximum latency.

V. RELATED WORK

Dynamic software upgrade systems have received much
attention from the research community over the last years,
resulting in a vast literature. But, as we are limited in space,
we discuss only the work that more closely relates to ours.

Gupta et al. [6] propose a formal framework for dynamic
software upgrades. They define an upgrade as valid if, after a
finite amount of time past the upgrade, the upgraded program
behaves exactly as if it was running from the start. They
define formally the upgrade’s validity using a state mapping

and prove that this problem is generally undecidable. The
upgrade validity problem maps directly to finding upgrade
safe-points: If an upgrade is not applied at a safe point, the
resulting program can reach an invalid state that does not
exist in either the new nor the old program version.

Boyapati et al. [2] introduce a set of upgrade modularity
conditions that allow persistent object stores to convert the
state lazily whilst offering immediate upgrade semantics.
They take advantage of object encapsulation to avoid using
versions where possible. There are, however, cases in which
encapsulation fails3. In such cases, the authors state that
their system uses versions but they do not discuss how their
system manages versions. DuST’M implements, on the pro-
gramming environment, the same upgrade semantics. This
brings new challenges that the authors do not address and
DuST’M solves, such as the interplay between upgradable
and transactional objects. Moreover, DuST’M uses versions
for every object to provide the atomic upgrade semantics.

Neamtiu et. al. [8] consider dynamic upgrading trans-
actional applications. They introduce transactional version
consistency (TVC), a correctness property that ensures that
transactions appear to execute entirely at the same code
version. The authors also show how contextual effects can be
used to statically enforce TVC by computing them at each
code position and using them to decide if a transaction may
be safely upgraded on that code position. The authors also
discuss an alternative implementation that would apply up-
grades optimistically and comit or rollback the transactions
according to contextual effects computed at runtime. This
technique resembles what Software Transactional Memories
already perform for conflict detection. Some of the authors
later proposed [7] induced update points, barrier synchro-
nization, and relaxed synchronization to increase the window
of opportunity to safely install upgrades.

The Java Virtual Machine itself has HotSwap [4], a
limited type of dynamic software upgrades that allows to
modify method bodies only. Würthinger et al. [12] presents
DCE VM, a modified JVM that supports installing arbitrary
modifications. Upgrades may, however, fail and cause the
whole program to terminate abruptly. Furthermore, their
system does not support any custom program state mi-
gration. Subramanian et al. [11] present JVolve, a similar
JVM enhanced for supporting dynamic software upgrades.
An upgrade may still fail, but JVolve discards it and keeps
executing the program on the old version. JVolve supports
custom transformer methods to convert the objects between
versions. Both DCE VM and JVolve convert the program
state immediately and impose virtually no steady state
performance overhead.

Orso et al. [9] present DUSC, a dynamic upgrade system
that does not modify the JVM. They also introduce an
extra level of indirection using a bytecode post-processor.

3For instance, mutually referenced objects and circular object structures.



However, when compared to DuST’M, their system presents
two major limitations: (1) DUSC discards upgrades if any
thread is executing any method that belongs to an upgraded
type, and (2) upgrades cannot modify the interfaces of
upgradable types nor change the class hierarchy.

VI. CONCLUSION

This paper shows how to to provide immediate upgrade
semantics to the developer writing the conversion code while
converting the program state lazily. We describe a novel
technique in which we employ a Software Transactional
Memory to execute the conversion code in the logical
past and ensure its correctness according to the atomic
upgrade semantics, which we present as an adaptation of
the previously proposed upgrade modularity conditions [2].

We also present an experimental evaluation that compares
immediate with lazy state conversion. We show that the
pause that immediate state conversion introduces gets longer
by increasing the total size of the program’s state, increasing
the maximum response time up to three orders of magnitude.

Our lazy approach, on the other hand, keeps a constant
maximum response time, regardless of the total size of the
program’s state. Unlike immediate upgrades, which can be
implemented with virtually no steady state overhead [11],
[12], lazy upgrades always introduce some overhead. Our
experimental evaluation also addresses the steady state over-
head and our results show overheads between 18% and 37%.

Our main goal when developing DuST’M is to design
a practical dynamic upgrade system that is easy for the
developer to use. This paper discusses how to provide simple
upgrade semantics without imposing a long upgrade pause.

A part of that goal that this paper does not address is
related with how the developer writes the program state
conversion logic. We already have a proposal about such
code [10]. We plan to validate its expressiveness by using
it to specify upgrades applied to representative open source
applications, such as the Fénix Edu project [1].

DuST’M’s prototype also has some limitations: It keeps
versions for every instance that are never garbage collected
and it needs to convert every upgradable type at each
upgrade, even those types that remain unchanged. We plan
to solve these shortcomings by using static analysis on
the conversion code to avoid keeping unnecessary versions,
implementing a background thread that converts every live
object in parallel with the program’s normal operation, and
using HotSwap [4] to avoid converting unchanged types.
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