
Profiling and Tuning the Performance
of an STM-Based Concurrent Program

Luı́s Pina João Cachopo
Instituto Superior Técnico / INESC-ID
{luis.pina,joao.cachopo}@ist.utl.pt

Abstract
Over the last years, multicores have become accessible to
the common developer but writing concurrent programs that
are correct and that display good performance still is a hard
task. Software Transactional Memory (STM) is a step in the
direction of solving the first problem, but it does not provide
tools for the programmer to understand and optimize his
code’s performance, thus leaving the second problem as an
open issue.

In this paper, we present a novel technique that informs
the developer about which objects cause JVSTM transac-
tions to conflict. Then, we describe how we used that tech-
nique together with several JVSTM conflict reduction tech-
niques to improve the performance of a transactional appli-
cation.

Categories and Subject Descriptors H.2.4 [Systems]: Trans-
action Processing; D.2.8 [Metrics]: Performance Metrics;
D.1.3 [Concurrent Programming]

General Terms Experimentation, Performance, Measure-
ment

1. Introduction
Until recently, programming multicores was considered a
niche left for developers specialized in parallel program-
ming. However, over the last years, multicores have become
accessible to the common developer.

Transitioning to multicores is hard due to two problems
that make writing concurrent programs a difficult task. First,
it is hard to write correct concurrent programs. Software
Transactional Memory (STM) is a step in the direction of
solving this problem. It simplifies the task of writing con-
current programs that may take full advantage of multicore

Copyright is held by the author/owner(s). This paper was published in the proceedings
of the Workshop on Transitioning to MultiCore (TMC) at the ACM Systems, Program-
ming, Languages and Applications: Software for Humanity (SPLASH) Conference,
October, 2011. Portland, OR, USA.

systems and, unlike other synchronizing techniques such as
locks, STMs are immune to deadlock and transactions com-
pose naturally. Second, it is hard to write programs that dis-
play good performance, which is the main reason for writing
concurrent programs in the first place.

Unfortunately, multicores only add complexity to the per-
formance problem. When writing a sequential program, the
developer can use a profiler to know which method is called
the most or how much time the program spends on each
method. Then, he optimizes the program using this infor-
mation.

However, when using an STM, the information that pro-
filers report is not as useful. For instance, consider transac-
tions that increment a shared counter in such way that the
increment accounts for a marginal percentage of the overall
transaction length. Consider, also, that this program displays
a poor throughput because transactions conflict on the shared
counter and get restarted over and over again. Clearly, using
a profiler on this simple example does not help the devel-
oper to find the cause of the poor performance. The devel-
oper must know that the read and write of the transactional
memory location that keeps the shared counter is causing a
large number of conflicts.

Informing the developer about which memory locations
cause transactions to restart is not enough to solve the per-
formance problem. We must also provide tools for him to use
to reduce those conflicts. On a sequential program, the devel-
oper solves the performance issue by using familiar tactics,
such as writing a fast path for the common case or using a
more efficient data-structure. On a transactional concurrent
program, however, the developer must use different and un-
familiar1 tactics to reduce the number of conflicts that afflict
his program.

In this paper, we present a technique that uses the con-
flicts on the read-set of transactions to inform the developer
about which transactional memory locations experience con-
flicts and cause transactions to abort and restart. We imple-
mented such technique on JVSTM [1].

1 Unfamiliar for the common developer, not new for the concurrent pro-
gramming community.



The main contributions of this paper are:

1. The first empirical evaluation of two techniques for re-
ducing conflicts on JVSTM previously described [1]: per
transaction boxes and restartable transactions;

2. A technique to detect transactional memory locations
whose conflicts cause JVSTM transactions to abort and
restart;

3. A set of techniques to reduce the conflicts that transac-
tional memory locations cause for STMs in general, and
JVSTM in particular;

4. A case study that shows how to use contributions 1 and
2 to improve the throughput of STMBench7 on higher
levels of concurrency.

The majority of the techniques that we present as part of
contributions 2 and 3 are STM agnostic, although we im-
plemented them for JVSTM. Even if different STMs ship
with different tactics for reducing conflicts, we believe that
the conflict detection technique can be ported to other STMs
with little effort. Bringing the information about conflicts
sheds light on the behavior of the application, thus increas-
ing the confidence of the developer that uses the STM. We
strongly believe that is an important step for the transition
to multicores, paving the way for the common developer to
adopt STMs to write his concurrent applications.

The remainder of this paper is structured as follows.
In Section 2 we describe the effect that conflicts have on
JVSTM’s performance. In Section 3 we describe a tech-
nique for detecting which VBoxes cause conflicts and how
many conflicts each VBox causes. In Section 4 we present
the conflict reduction techniques that we used for JVSTM.
In Section 5 we describe how we optimized STMBench7’s
JVSTM backend implementation. In Section 6 we compare
our approach to reduce conflicts with other existing and sim-
ilar approaches. Finally, we conclude in Section 7.

2. Conflicts and Performance
To write a concurrent program using an STM, the developer
groups actions that access shared memory locations within
transactions. Transactions may commit, making their whole
set of changes atomically visible to all other transactions, or
abort, discarding the changes and appearing as if the trans-
action never took place. Conflicts happen when the STM
mechanism cannot serialize a transaction whilst ensuring an
opaque history [3] of committed transactions.

JVSTM [1] is an STM that detects conflicts at com-
mit time. When a transaction T1 reaches the commit stage,
JVSTM checks if all transactional locations (or VBoxes, in
JVSTM terminology) in T1’s read-set are still valid — that
is, if no other transaction T2 that committed between T1’s
start and commit has written to those locations.

When JVSTM finds a conflict on validating T ’s read-
set, it aborts and restarts T . Therefore, when a transaction

experiences a conflict, it loses all the progress that it made. A
shared object that causes a large number of conflicts can thus
render useless most of the work that a transactional program
performs, severely hindering its performance.

Figure 1 shows how conflicts affect the throughput of
a transactional program. We obtained the results that we
present in this paper using a machine equipped with 4 AMD
Opteron 6168 chips (12 cores per chip, 48 cores total) with
128GB of RAM. We used Java(TM) SE Runtime Environ-
ment (build 1.6.0 24-b07) with Java HotSpot (TM) 64-bit
Server VM (build 19.1-b02, mixed mode). Each value that
we report (either a point on a chart or a cell on a table) rep-
resents the average of 10 executions, which took place in
sequence.

We used STMBench7 to generate the results that we
present in this paper. STMBench7 is a benchmark to evaluate
different STM implementations. There are a set of classes
that each STM implementation must provide. Such classes
are: (1) backend objects, typical data structures that every
program uses, such as sets, bags, and indexes, or (2) core
objects that STMBench7 interconnects to build a rich ob-
ject graph. STMBench7 interconnects the instances of those
classes and creates a rich object graph. Then, it uses several
traversal operations to visit and modify parts of that graph
atomically, resulting in a non-trivial concurrent behavior. It
supports three different workloads, each one featuring a dif-
ferent mix2 of read-only and read-write operations: (1) read-
dominated, (2) read-write, and (3) write-dominated. To gen-
erate the chart on Figure 1, we used a direct implementation
of those classes. By direct, we mean an implementation as a
common developer unaware of STM internals would write. 3

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

1 4 8 16 32 48
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

T
h
ro

u
g
h
p
u
t 

(O
p
s 

/ 
S
e
c)

R
e
st

a
rt

 R
a
te

Threads

RD Throughput
RW Throughput
WD Throughput

RD Restart-Rate
RW Restart-Rate
WD Restart-Rate

Figure 1. Throughput and restart rate obtained with the
direct implementation of STMBench7. The black and grey
lines are measured on the left and right y axis, respectively.

We can see in Figure 1 that STMBench7 tolerates con-
flicts without losing performance until the restart rate caused
by those conflicts reaches 15%. This happens for the read-

2 Operation types and relative percentages of each operation.
3 The direct implementation was indeed written by a developer unaware of
STM internals, at the time. Please see the acknowledgments section.



write and write-dominated workloads until 4 threads, and for
the read-dominated workload until 8 threads. Past that restart
rate value, the predominance of conflicts prevents STM-
Bench7’s throughput to improve with the increasing number
of threads. This illustrates how deeply conflicts affect the
throughput of programs that use STMs.

3. Detecting Conflicts
In an object-oriented language such as Java, programs are a
set of classes. Some fields of those classes are accessed con-
currently. Using JVSTM, the developer uses VBoxes to keep
the shared fields’ values and access their value transaction-
ally. The value of the field itself, the VBox, never changes.
Only the contents of that VBox changes.

To understand why a given VBox causes so much con-
flicts, developers are interested in knowing which field keeps
that VBox. Thus, we added information about which field
“owns” each VBox to usefully report the conflicts back to
the developer. We implemented a Java agent that modifies
the bytecode of every loaded class and performs the trans-
formation that Figure 2 shows.

// Original
class C { final VBox box = new VBox(); }

// Transformed
class C { final InfoVBox box = new InfoVBox ("C::box"); }

class InfoVBox extends VBox {
String ownerName;
InfoVBox (String ownerName) { this.ownerName = ownerName; }

}

Figure 2. Transformation that the Java agent performs on
every loaded class C with fields of type VBox.

When a transaction tries to commit, JVSTM starts by val-
idating its write-set, thus ensuring that all VBoxes present on
the read-set have not changed since the committing trans-
action started. If this validation fails, JVSTM aborts and
restarts that transaction at the first conflict.

Our conflict detection technique is an extension of this
mechanism: When validating a transaction, JVSTM vali-
dates all VBoxes present on the read-set instead of stopping
on the first one that causes a conflict, and collects informa-
tion about which VBoxes cause conflicts and in how many
conflicts is each VBox involved.

Using the conflict detection technique on the STM-
Bench7 setting that generates the most conflicts (48 threads,
write-dominated workload) yields the information that Fig-
ure 3 shows. We can clearly see that class AtomicPartImpl
owns the two VBoxes that generate most conflicts.

4. Reducing Conflicts
So far, we have described a technique that informs the de-
veloper about which VBoxes cause most conflicts and thus
hinder the application’s performance. But how can he reduce
such conflicts?

AtomicPartImpl::y 64.052.709
AtomicPartImpl::x 64.052.709
LargeSetImpl::elements 93.991
LargeSetImpl::count 47.154
VQueue::front 18.245
ManualImpl::text 16.850
VIndex::index 15.210

Figure 3. Fields that cause most conflicts on the direct
STMBench7’s implementation (WD workload, 48 threads).

STMs typically explore the notion of benign conflicts to
introduce mechanisms to reduce conflicts. A benign conflict
poses as a false positive: Although the STM considers it a
conflict due to the conflict detection that it performs, seman-
tically that conflict is tolerable. Different STMs have differ-
ent mechanisms for dealing with such conflicts, we leave that
discussion to Section 6.

JVSTM uses a commit lock to ensure that only one trans-
action is committing at any given instant. To commit a trans-
action T , JVSTM starts by validating its read-set (ensuring
that no other committed transaction modified any VBox read
by T ). Then, if T is valid, JVSTM writes back the values
modified by T to the respective VBoxes, thus making T
globally visible.

JVSTM’s original proposal [1] introduces mechanisms
for dealing with benign conflicts: Per transaction boxes and
restartable transactions. We extended those mechanisms
with transactional futures. Some of these mechanisms delay
computations so that they execute inside the commit lock.
We shall now describe each mechanism with a brief exam-
ple.

4.1 Per transaction boxes
Consider a program in which we have a shared counter that
every transaction increments at least once and only some
transactions, with low probability, read the counter.

A naive implementation that reads the value of the
counter, increments it, and finally writes the result back
to the counter, performs miserably. This happens because,
among N concurrent transactions, only 1 is able to com-
mit. When each of the other transactions enter the commit
stage, JVSTM detects that the counter has changed since the
transaction read it and restarts the transaction.

A per transaction box, as the name implies, keeps a dif-
ferent value for each transaction. Moreover, they provide the
developer with a hook to execute code at the commit stage,
while still inside the commit lock and after the transaction’s
read-set is successfully validated. Developers can use a per
transaction box to store how many times the program did in-
crement the shared counter during a transaction. Then, they
can use the hook to actually add the contents of the per trans-
action box to the shared counter.



By using a per transaction box, the increment operation
does not register the shared counter on the transactions’
read-set. Therefore, it eliminates all conflicts on that shared
counter. It allows that several concurrent transactions incre-
ment the counter without conflicting with each other.

4.2 Transactional futures
Following the shared counter example, let us now consider
that the transaction that increments the counter executes in-
side a method that returns the concrete value left on that
counter after the transaction finishes. The transaction itself
is not interested on the particular value of the counter. How-
ever, it must read the counter to return the value. This sce-
nario precludes using per transaction boxes to avoid adding
that counter to the transaction’s read-set.

We propose transactional futures to deal with this sce-
nario. A transactional future, like a regular future, represents
the promise of a result. JVSTM is free to delay the compu-
tation of a transactional future until its value is used for the
first time. If this first time does not happen during the lifes-
pan of the transaction which originally created the future,
JVSTM can compute its value inside the commit lock.

Getting back to the counter example, the transaction re-
turns a transactional future to the enclosing method, which
in turn returns the concrete value from that future after the
transaction ends. This way, the shared counter does not reach
the read-set and does not cause any conflict.

4.3 Restartable transactions
Consider a shared map backed up by a sorted linked list.
From the map’s point of view, there are two kinds of op-
erations: Find and modify. A find operation, which is the
most common, gets the item mapped to a key on the map,
without modifying the map. A modify operation adds or re-
moves items, modifying the map. Both types of operations
must navigate through the list until finding the right position.
Transactions group several operations together.

When they are navigating through the list, operations
cause the surrounding transaction to add every list node read
to the read-set. A modify operation changes the value of a list
node. Therefore, all concurrent transactions with that node
on their read-set shall fail to validate when they attempt to
commit. As a result, a modify operation may cause several
other transactions that execute the find operation to abort
even when the modify operation modifies a different item.

JVSTM defines restartable transactions to deal with
this problem. A restartable transaction wraps a read-only
method’s execution, keeping a separate read-set and saving
the value that the method returns. If JVSTM fails to val-
idate a restartable transaction’s read-set, it re-executes the
associated read-only method inside the commit lock and
against the most recent version of the world. If the method
returns the same result on the re-execution, the restartable
transaction is still valid. In the example that we have been

following, the developer would annotate the find operation
to execute inside a restartable transaction.

5. Reducing Conflicts on STMBench7
To reduce the conflicts on STMBench7’s JVSTM original
implementation, we repeated several rounds of the follow-
ing process: Running the conflict detection technique that
we present in Section 3, and modifying how the direct im-
plementation uses the most conflicting VBox. In this sec-
tion, we describe how we optimized the direct implementa-
tion to reduce the number of conflicts. Due to space limi-
tations, in this paper we give only a brief overview and de-
scription of the various techniques used to reduce conflicts in
the STMBench7 implementation. A more detailed descrip-
tion of these techniques with all intermediate results after
each individual optimization can be found elsewhere [9].

5.1 Atomic Part
There are two VBoxes on class AtomicPart, x and y, that
are responsible for a large number of conflicts. The only
method that writes to them, swap, swaps their value. We
added a per transaction box swapped that holds a boolean
that indicates if the conflicting VBoxes should be swapped
at commit time. Method swap negates the value that the
per transaction box keeps. This modification moves the real
swapping and reading of the boxes to commit time, avoids
adding the boxes to the read-set during the transaction and,
thus, avoids conflicts.

5.2 Large Set
Class LargeSet represents a set of objects, backed by a
functional red-black tree. Transactions use this set in one of
three possible ways: (1) add objects to the set, (2) remove
objects from the set, or (3) iterate over the set or check if a
given object is part of the set. We added two per transaction
boxes added and removed that hold sets of elements. Adding
or removing an element just adds that element to the per
transaction box added or removed, respectively. At commit
time, each value in per transaction box added is added to the
set, and each value in removed is removed.

5.3 Manual
Class Manual represents a singleton instance that keeps a
large string in field text. The only method that modifies
field text is method replaceChar, which replaces all occur-
rences of a given character by another character and returns
the number of characters that it replaced. We modified the
implementation of method replaceChar to return a transac-
tional future. Such transactional future, when computed at
commit time, replaces the characters on the string stored in
VBox text and returns how many substitutions it performed.

However, this optimization actually yielded worst results
when we introduced it. This happens because we moved



a large computation to execute inside the commit lock. 4

When STMBench7 emits an operation that involves using
this computationally intensive transactional future, all other
transactions that attempt to commit must wait for the commit
lock. To mitigate this problem, we implemented a concurrent
version of method replaceChar that breaks the string on
several chunks, assigns a task to replace the characters on
each chunk, and uses a thread pool to execute such tasks.

5.4 VIndex
Class VIndex is an index that maps integer based keys to
objects, backed by a functional red-black tree. To reduce the
conflicts on the VBox that keeps the index, we used two per
transaction boxes added and removed, similarly to what we
did with class LargeSet that we explain in Section 5.2.

However, almost every STMBench7 transaction starts by
consulting a VIndex instance. Transactions that modify the
VIndex are much less frequent. To reduce those conflicts,
we used restartable transactions to wrap the execution of the
method that consults the index.

5.5 ID Pool
STMBench7 generates a-priori all integer-based identifiers
that it associates with objects on VIndex instances. Class
IDPool keeps the unused IDs. The direct implementation
uses a queue to keep the unused IDs. When a transaction
requests an unused ID, it gets the first element of that queue.
This leads to a large number of conflicts because every
concurrent transaction that requests an unused ID gets the
same one. The first one to try to commit is able to do so, all
others that use that same ID abort and get restarted.

We implemented a new ID pool that has one queue per
each thread. Initially, IDs are scattered among all pools on a
round-robin basis. To get an unused identifier, each transac-
tion uses the queue of its thread, therefore avoiding conflicts
with other concurrent transactions that also request IDs.

5.6 Experimental Results
This section reports the results that we obtained after intro-
ducing all the optimizations that we described previously.

We can see in Figure 4 that the optimizations that we in-
troduced succeed at avoiding conflicts and thus keeping the
restart-rate low (always below 25% when before they were
as high as 80%). As a consequence, we can see that the
throughput improves considerably on all three workloads.
Moreover, the benchmark scales better: Its throughput peaks
at 16 threads for all workloads, whilst previously it peaked
at 8 threads on the best case. After reaching the peak, intro-
ducing more threads yields a slightly lower throughput.

4 We discovered that method java.lang.String.replace was computa-
tionally intensive on this long string using a regular profiler.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

1 4 8 16 32 48
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

T
h
ro

u
g
h
p
u
t 

(O
p
s 

/ 
S
e
c)

R
e
st

a
rt

 R
a
te

Threads

Original Read-Dominated Throughput
Optimized Read-Dominated Throughput

 0

 400

 800

 1200

 1600

 2000

 2400

 2800

 3200

 3600

1 4 8 16 32 48
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

T
h
ro

u
g

h
p

u
t 

(O
p

s 
/ 

S
e
c)

R
e
st

a
rt

 R
a
te

Threads

Original Read-Write Throughput
Optimized Read-Write Throughput

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

1 4 8 16 32 48
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

T
h
ro

u
g

h
p

u
t 

(O
p

s 
/ 

S
e
c)

R
e
st

a
rt

 R
a
te

Threads

Original Write-Dominated Throughput
Optimized Write-Dominated Throughput

Figure 4. Throughput and restart rate obtained using STM-
Bench7’s optimized implementation. The black and grey
lines are measured on the left and right y axis, respectively.

6. Related Work
To the best of our knowledge, little, if any, attention has been
devoted to the problem of identifying which objects cause
conflicts. However, several researchers in the past acknowl-
edged the influence of conflicts on the performance of STMs
and proposed mechanisms to reduce them.

For instance, Herlihy et. al. [7] introduced early release,
and Ni et. al. [8] proposed open nesting. In both cases, the
goal is to remove from the read-set elements that the pro-
grammer knows that are not relevant to the correctness of



the transaction. With early release, it is up to the devel-
oper to guarantee that the read-sets are correct without the
removed elements. With open-nesting, the developer must
write compensation actions to undo the effects of an open-
nested transaction and must take care with the order in which
such compensation actions take place to avoid deadlocks.
Both of these approaches are thus very error-prone.

Herlihy and Koskinen propose Transactional Boosting [6],
a methodology for transforming highly-concurrent lineariz-
able objects into highly-concurrent transactional objects.
Transactional boosting is not generally applicable and may
lead to deadlocks. It is thus very error-prone and fit for spe-
cialized developers to code highly-concurrent transactional
libraries that other developers use modularly.

In contrast to these approaches, we use per transaction
boxes, transactional futures, and restartable transactions,
which allow us to solve many of the same problems but
in a less error-prone way.

The idea of re-executing a part of a transaction at commit
time that restartable transactions explore can be traced back
to field calls [2]. Our use of restartable transactions is similar
to the advantages provided by Abstract Nested Transactions
later proposed by Harris and Stipić [5].

7. Conclusion
In this paper, we present a simple technique that uses the
conflicts on the read-set of transactions to inform the de-
veloper about which transactional memory locations cause
conflicts, thus aborting and restarting transactions. We im-
plemented such technique on JVSTM [1]. Furthermore, we
put ourselves in the common developer shoes: We use this
simple technique to identify which transactional locations
prevent STMBench7’s [4] throughput to scale to higher lev-
els of concurrency, and use a set of techniques to reduce the
conflicts that the implementation of STMBench7 on top of
JVSTM experiences. Among those techniques , we included
some JVSTM specific techniques that were previously de-
scribed [1] (per transaction boxes and restartable transac-
tions). We also include some other known techniques that
are generally applicable to concurrent programs.

After introducing the optimizations that reduce conflicts
on STMBench7’s JVSTM implementation, we conducted
an experimental evaluation. The results show that the opti-
mizations succeed at avoiding conflicts, always keeping the
restart-rate below 25% when before they were as high as
80%. As a direct result, we were able to boost STMBench7’s
throughput on all three workloads, enabling it to scale up to
16 threads, whilst originally it scaled only up to 8 threads on
the better case. Moreover, when running STMBench7 with
more than 16 threads, the throughput keeps near the peak
performance value (even though below it), whereas previ-
ously it dropped considerably.

Writing correct concurrent programs is a hard task that
STMs simplify. But developers are also concerned about per-

formance, and current STMs do not provide tools to help
developers finding performance bottlenecks or solve them.
This paper presents a conflict detection technique that al-
lows the developer to reason about performance in terms
of conflicts between shared transactional memory locations.
It also shows that per-transaction boxes, restartable transac-
tions, and transactional futures are effective tools to decrease
the conflicts that shared objects cause.

Acknowledgments
We would like to thank Hugo Rito for the direct implemen-
tation of STMBench7 on top of JVSTM that he wrote when
he first started his MsC thesis work.

This work was partially supported by FCT (INESC-ID
multiannual funding) through the PIDDAC Program funds
and the RuLAM project (PTDC/EIA-EIA/108240/2008).

References
[1] J. Cachopo and A. Rito-Silva. Versioned boxes as the basis for

memory transactions. Sci. Comput. Program., 63(2):172–185,
2006.

[2] J. Gray and A. Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1st edition, 1992.

[3] R. Guerraoui and M. Kapalka. On the correctness of transac-
tional memory. In Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel program-
ming, PPoPP ’08, pages 175–184. ACM, 2008.

[4] R. Guerraoui, M. Kapalka, and J. Vitek. Stmbench7: a bench-
mark for software transactional memory. In EuroSys ’07: Pro-
ceedings of the 2nd ACM SIGOPS/EuroSys European Confer-
ence on Computer Systems 2007, pages 315–324. ACM, 2007.

[5] T. Harris and S. Stipic. Abstract nested transactions. In
TRANSACT ’07: 2nd Workshop on Transactional Computing,
aug 2007.

[6] M. Herlihy and E. Koskinen. Transactional boosting: a
methodology for highly-concurrent transactional objects. In
Proceedings of the 13th ACM SIGPLAN Symposium on Princi-
ples and practice of parallel programming, PPoPP ’08, pages
207–216, New York, NY, USA, 2008. ACM.

[7] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer. Soft-
ware transactional memory for dynamic-sized data structures.
In Proceedings of the twenty-second annual symposium on
Principles of distributed computing, PODC ’03, pages 92–101,
New York, NY, USA, 2003. ACM.

[8] Y. Ni, V. S. Menon, A.-R. Adl-Tabatabai, A. L. Hosking, R. L.
Hudson, J. E. B. Moss, B. Saha, and T. Shpeisman. Open
nesting in software transactional memory. In Proceedings of
the 12th ACM SIGPLAN symposium on Principles and practice
of parallel programming, PPoPP ’07, pages 68–78, New York,
NY, USA, 2007. ACM.

[9] L. Pina and J. Cachopo. Reducing conflicts on jvstm transac-
tions - stmbench7: A case study. Technical Report 39, INESC-
ID, August 2011.


	Introduction
	Conflicts and Performance
	Detecting Conflicts
	Reducing Conflicts
	Per transaction boxes
	Transactional futures
	Restartable transactions

	Reducing Conflicts on STMBench7
	Atomic Part
	Large Set
	Manual
	VIndex
	ID Pool
	Experimental Results

	Related Work
	Conclusion

