
Towards a Pragmatic Atomic Dynamic Software Upgrade System

Luı́s Pina

INESC-ID/Technical University of Lisbon
E-mail: luis.pina@ist.utl.pt

Abstract

The upgrade of a running program is often a disrup-
tive operation that involves stopping and restarting the pro-
gram’s execution, becoming, thus, a serious problem for de-
pendable systems. Yet, software upgrades are unavoidable.
Unfortunately, current solutions for dynamic software up-
grades are either incomplete or not practical.

In this paper, I layout the foundations for a new dynamic
software upgrade system that provides atomic upgrades and
is designed to integrate seamlessly with the current software
development practices. This new upgrade system leverages
on a software transactional memory to ensure that all the
requests of an upgraded system are processed in a consis-
tent state of the program, either before or after the upgrade.

1. Introduction
Several computer systems nowadays are required to run

continuously without any interruption. The dependability of
such systems is very important to avoid significant financial
losses or even risk to human life.

The software running on these systems must be able to
be upgraded to repair bugs, improve performance, or add
new functionality. However, upgrading a computer system
is a highly disruptive process. In the simplest case, it may
involve shutting down the system and restarting it, thereby
resulting in some downtime. This is unacceptable for most
dependable systems.

A system that supports dynamic software upgrades, on
the other hand, is able to upgrade its software without
stopping the provided service, thus without any noticeable
downtime.

For instance, techniques such as rolling upgrades and
big flip [5] take advantage of existing redundant hardware
(used for fault tolerance and load balancing) to enable the
dynamic upgrade of a system. But, such systems also keep a
state that is tightly coupled with the behavior and that must
be converted to be compatible with a new behavior when
the system is upgraded. Unfortunately, These techniques
fail to support dynamic upgrades in an atomic way. With
an atomic upgrade semantics, all operations submitted to

the system are performed in the previous version or in the
new one, never in an inconsistent intermediate version, a
by-product of a still-in-progress upgrade process.

The upgrade system that I propose enables the atomic
dynamic upgrade of a system. It also provides tools for con-
verting the state across the different versions.

The approach that I propose for developing upgrades is
designed to be practical, so that its interference with the
development process is minimal. Moreover, it strives to re-
duce the complexity of the code that the developer is re-
quired to write to convert state: that code needs to deal only
with two consecutive versions of the system.

In the following section I make an overview of the solu-
tion that I propose. In Section 3, I explain some of the goals
that the proposed system must achieve, provide more details
about the proposed solution and discuss some implementa-
tion issues. In section 4, I discuss previous work related to
the proposed system. Finally, in Section 5, I conclude and
discuss future work.

2. Conceptual Model
For the purposes of the upgrade system, an application

consists of two layers: the execution platform that supports
the execution of the application’s code and the upgrade-
able code, that contains the application itself. The upgrade
system is a part of the execution platform. The execution
platform is not upgradeable.

The main components of an upgradeable application are
shown in Figure 1. The execution environment runs the ap-
plication by executing the program—a sequence of instruc-
tions that defines the behavior of the application. It receives
a stimulus from the exterior and reacts accordingly, execut-
ing the program and sending the result—a response.

This behavior of the execution environment is defined by
the execution platform.

Given the tight coupling of the program with the state
that it manipulates, an upgrade may need to transform the
program state to allow the correct operation of the new pro-
gram. This transformation is done by a transform func-
tion: a function that initializes the new program state based
on the current.

Stimulus

Response

Local Local
Transactional Memory

Shared

Program

Sequence of

instructions

Program state

Thread

Execution Environment

Figure 1: Conceptual model

2.1. Execution Environment

The execution environment keeps the current state of the
application—the program state. To process each stimulus,
it spawns a new thread that will access the program state to
compute the response to the stimulus.

Although each thread has its own private data—the local
program state—in which it keeps local variables and local
copies of portions of the program state, all threads share
some portion of the program state—the shared program
state.

Since there is a portion of the program state shared by
several threads, we need a synchronization mechanism to
avoid concurrency related problems and resulting data cor-
ruption. In this work, I assume that a transactional memory
is used—a Software Transactional Memory (STM)—to
keep the shared program state correct. Each thread executes
a request on its own transaction. The STM ensures that each
transaction always has a coherent vision of the shared pro-
gram state and that the shared program state is written atom-
ically only if the transaction commits successfully. The lo-
cal program state of each thread does not require any syn-
chronization mechanism because it is private to that thread.
The STM is also a part of the execution platform.

2.2. Software Upgrades

An upgrade is a special kind of stimulus. It contains a
new program to replace the program currently in execution.
Like all other stimuli, the upgrade is handled by a thread and
must be perceived by the application as an atomic action.

Unlike other requests, however, the handling of an up-
grade means that a new version of the program must be
created. So far, the program has been considered read-
only (immutable), thus each thread could read it without
any synchronization mechanism. Introducing dynamic up-
grades means that the thread’s accesses to the program must
be synchronized also, just like the accesses to the program
state. Different threads may be executing different program
versions just as different threads execute over different pro-
gram states.

3. Proposed Solution
The goal of my work is to develop an upgrade system

that: llows any part of the application to be upgraded at

any time without disruption, provides an atomic upgrade se-
mantics and integrates seamlessly with the current software
development practices.

3.1. Development Process

Typically, software developers use a revision control sys-
tem to keep track of the source code evolution. There are
two different notions of version that I must distinguish.
For the revision control system, a version is some piece of
source code that was submitted later than the previous one
and differs from it in some way. Such notion of version is
commonly known as a revision. For instance, the devel-
oper starts by writing “Version 1” of the class Point shown
in Figure 2. This is revision 1. After that, he changes from
polar coordinates to cartesian coordinates, making revision
2. Finally, he writes the transform function convert and
creates revision 3.

On the other hand, for the upgrade system, an upgrade-
able version is a portion of executable code that redefines
some subset of the code currently in execution. Besides
the definition of the new application behavior, an upgrade-
able version also has transform functions that allow it to
convert the program state used by the immediately previous
upgradeable version.

How do upgradeable versions relate to revisions? Not
every revision can be an upgradeable version, since revi-
sions are free to contain inconsistent code. But the devel-
oper can mark a revision as being an upgradeable version.
An upgradeable version is a revision that must have the fol-
lowing two properties. First, it must be complete—that is,
if the interface exported by some class C changes, all of
C’s client classes must also have a new version. Second,
every transform function must be able to fully initialize an
instance of the new version of any class present in the up-
grade, given an existing instance of the previous version.
Only revision 1 and 3 of class Point are upgradeable ver-
sions. Revision 2 lacks the transform function.

On marking an upgradeable version, the upgrade system
removes the transform functions and creates a new revision
on the revision control system. To write a new upgradeable
version of the system, the developer starts from this latter
revision and writes the modifications while adding conver-
sion code to the transform functions.

3.2. Composing Upgrades

The system evolves between upgradeable versions. Each
upgradeable version is able to convert the state that exists
in the immediately previous upgradeable version. If an in-
stance is left in a version older than the immediately pre-
vious upgradeable version, the upgrade system will convert
it successively until its version reaches the current upgrade-
able version.

If an upgradeable version is not put into execution, it
must be submitted to the upgrade system when deploying

class Point { //Revision 1
private double rho, theta;
public double getDistance() {...}

}
class Point$1 { //Version 1 in Runtime:

public static double $rho(Point$1 p) {...}
public static double $theta(Point$1 p) {...}
private double rho, theta;
public double getDistance() {...}

}
class Point { //Revision 2
private double x, y;
public double getDistance() {...}
//Introduced in Revision 3
static void convert(old.Point o, Point n) {

n.x = o.rho * cos(o.theta);
n.y = o.rho * sin(o.theta);

}
}
class Point$2 { //Version 2 in Runtime:

public static double $x(Point$2 p);
public static double $y(Point$2 p);
private double x, y;
public double getDistance();
static void convert (Point$1 o, Point$2 n) {

n.x = $rho(o) * cos($theta(o));
n.y = $rho(o) * sin($theta(o));

}
}

Figure 2: Evolution of a class, in source code (re-
visions) and runtime (versions)

a later upgradeable version.

3.3. Referring to the Old State
When writing a transform function, the developer must

be able to refer to the previous version of the instance that he
is converting. The proposed upgrade system enables this by
generating a “dump” of the classes present in the previous
version. These old classes have all the fields and methods
marked as public, to allow the developer to access the in-
ternal state of the old instance. For instance, in reversion 2,
the Point class refers to a class old.Point.

The old classes are useful for the development process,
to make the new version compilable. When deploying the
upgrade, these classes are discarded and all references made
to them are rewritten before the new version is put into ex-
ecution. This process is illustrated in Figure 2. When com-
paring the source code that the developer writes (revision
2) with the code generated by the upgrade system (version
2), we find that the convert method previously expected an
old.Point as first argument but it was rewritten to expect a
Point$1 in runtime.

3.4. Bytecode Rewriting
As shown in section 3.3, an upgradeable version is not

yet ready to be put into execution after being compiled. Us-
ing a bytecode manipulation framework (such as Javassist
[8], ASM [6] or BCEL [9]), the bytecode generated by the
compiler must suffer several modifications, to solve the fol-

lowing problems:

1. How can several versions of the same class be present
at the same time in the same JVM?

2. How can the upgrade system maintain the identity of
the instances when converts them to new versions?

3. How can the new version be able to access instances of
the previous version?

The first item is solved by simply changing the name of
all the classes under the control of the upgrade system. The
same class in different versions is actually a different class
inside the JVM. Since the upgrade system must rewrite all
classes, it is able to generate non-conflicting names for each
class in each version. In Figure 2 there is a suggestion of
non-conflicting names.

This process is not totally transparent: when debugging
the application, the developer may see the generated names
for the classes. Since the generated class names reflect the
original names plus the version in execution when they were
deployed, the new class names can actually help the devel-
opers throughout the debugging process.

Since the same class in different versions is actually a
different class inside the JVM, the second item becomes
relevant. In the solution that I propose, all references to
instances of upgradeable classes are replaced by references
to VBoxes, which are transactional locations used by the
JVSTM [7] to keep the several versions of an object. Using
VBoxes provides an useful extra level of indirection: when
an instance needs to be converted, a new instance is allo-
cated, initialized and added to the version list of the VBox
that represents that instance. Thus, the identity of the in-
stance is preserved. To trigger the conversion of an object,
VBoxes can be modified to detect if there is a newer version
of the class and convert that instance by calling the appro-
priate method. Finally, by using VBoxes, requests that hap-
pened before the upgrade continue to access the program
state as it was before any part is converted, thus providing
an atomic semantics to the upgrade process. The upgrade
system rewrites the code generated by the compiler to in-
troduce VBoxes when accessing upgradeable classes, pre-
serving the type system of the application.

Finally, when converting instances between versions, the
developer has full access to the old instance. This includes
private fields and methods. To enable this, the upgrade sys-
tem generates static methods that allow the access to such
fields and methods. In Figure 2, we can see such meth-
ods: $rho and $theta, for instance. All references to pri-
vate fields and methods are rewritten, becoming references
to these accessors. In Figure 2, the convert method was
rewritten to use the generated accessors. Besides this trans-
formation, the upgrade system also removes references to
the old classes, used for the compilation process, as ex-
plained in section 3.3.

4. Related Work
Some programming languages, such as Common

Lisp [11], allow the developer to redefine parts of a running
program, thus upgrading it. In the Java world, however, tra-
ditionally no such redefinitions were possible, even though
some limited class redefinitions became possible with the
Java Platform Debugger Architecture (JPDA) [1]. More re-
cently, techniques such as binary code refactoring [10], ex-
tend the allowed redefinitions to a larger set. Yet, none of
these provide any support for composing successive evolu-
tions of a same class, allow developers to specify how ob-
jects should be migrated, or provide atomic semantics.

UpgradeJ [3] is a language level extension to the Java
programming language to support dynamic upgrades. The
developers have access to all the versions of any class by
using explicit version numbers when referring to that class.
Besides allowing the addition of new classes to a system,
UpgradeJ supports two types of upgrades. The behavior of
a class can be redefined and all of its instances immedi-
ately use that new behavior. When changing the structure
of a class, the developer cannot delete fields/methods and
he must create new instances to use the new class defini-
tion. One of the major problems with UpgradeJ is the bur-
den that it places on the developer by requiring him to use
explicit version control over every class plus decompose the
upgrades into the few types of evolution that it supports.

The work that is more related to this work is the work
of Boyapati et al [4]. They describe an upgrade system
based on transform functions that provides good semantics
that let the programmers reason about the transform func-
tions locally. They consider a transactional multithreaded
system very similar to what I describe in Section 2. They
define modularity conditions that define the semantics of
lazy atomic dynamic software upgrades. Such modularity
conditions are the major contribution of their work to the
proposed upgrade system. Nevertheless, there are several
aspects in which the proposed upgrade system differs from
mine. The authors argue that the upgrade system should
take advantage of the encapsulation that results from good
practices of object-oriented programming to meet the mod-
ularity conditions. The upgrade system that I propose uses
a versioned STM (JVSTM [7]), and takes advantage of the
versions of instances kept by it to meet the modularity con-
ditions. This is a novel aspect of my work. It also describes
in detail the implementation of an upgrade system designed
for the Java language, dealing with several implementation
issues such as, for instance, keeping the instance’s identity
across upgrades.

5. Conclusion and Future Work
I described the architecture of a practical system that en-

ables the atomic dynamic upgrade of an application while
integrating with the current common software development

process.
Deploying upgrades and converting the application state

appears to the rest of the application as an atomic action.
The proposed upgrade system uses JVSTM [7], a versioned
Software Transactional Memory, to achieve the atomic up-
grade behavior.

Developing upgradeable applications using the proposed
upgrade system has minimal interference with the com-
mon application development process due to its practical
approach. The proposed upgrade system is designed to in-
tegrate with revision control systems, helping the developer
to keep track of all application versions.

The developer is required to write a small portion of ver-
sion aware code: the transform functions. These functions
initialize the new state of the application based on the pre-
vious. To keep the writing of this code simple, the system
was designed so that the developer has to deal with only two
consecutive versions of the state.

The upgrade system that I propose in this document will
be implemented on top of the JVSTM. After that, it will
be integrated into the Fénix Framewok, which already uses
the JVSTM, reaching all systems that use it, such as the
FénixEDU project [2].

References
[1] Java(tm) platform debugger architecture.

http://java.sun.com/javase/6/docs/technotes/guides/jpda/.
[2] Fénixedu. http://fenixedu.sourceforge.net, 2005.
[3] G. Bierman, M. Parkinson, and J. Noble. Upgradej: Incre-

mental typechecking for class upgrades. In ECOOP ’08:
Proceedings of the 22nd European conference on Object-
Oriented Programming, pages 235–259, Berlin, Heidelberg,
2008. Springer-Verlag.

[4] R. Boyapati, B. Liskov, L. Shrira, C. hue Moh, and S. Rich-
man. Lazy modular upgrades in persistent object stores. In
In Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA, pages 403–417, 2003.

[5] E. A. Brewer. Lessons from giant-scale services. IEEE In-
ternet Computing, 5(4):46–55, 2001.

[6] E. Bruneton, R. Lenglet, and T. Coupaye. Asm: A code
manipulation tool to implement adaptable systems. In In
Adaptable and extensible component systems, 2002.

[7] J. Cachopo and A. Rito-Silva. Versioned boxes as the
basis for memory transactions. Sci. Comput. Program.,
63(2):172–185, 2006.

[8] S. Chiba. Load-time structural reflection in java. In ECOOP
’00: Proceedings of the European conference on Object-
Oriented Programming, pages 313–336. Springer-Verlag,
2000.

[9] M. Dahm and F. U. Berlin. Byte code engineering with the
bcel api. Technical report, 2001.

[10] D. K. Kim and E. Tilevich. Overcoming jvm hotswap con-
straints via binary rewriting. In In First ACM Workshop on
Hot Topics in Software Upgrades (HotSWUp 2008), 2008.

[11] G. Steele. Common Lisp the Language. Digital Press, 2nd
edition, June 1990.

