l.)

Check for
Updates

An Empirical Examination

James Kukucka
George Mason University
Fairfax, VA, USA
jkukucka@gmu.edu

Paul Ammann
George Mason University
Fairfax, VA, USA
pammann@gmu.edu

Abstract

Over the past decade, hundreds of fuzzers have been published in
top-tier security and software engineering conferences. Fuzzers are
used to automatically test programs, ideally creating high-coverage
input corpora and finding bugs. Modern “greybox” fuzzers evolve a
corpus of inputs by applying mutations to inputs and then executing
those new inputs while collecting coverage. New inputs that are “in-
teresting” (e.g. reveal new coverage) are saved to the corpus. Given
their non-deterministic nature, the impact of each design decision
on the fuzzer’s performance can be difficult to predict. Some design
decisions (e.g., " Should the fuzzer perform deterministic mutations
of inputs? ") are exposed to end-users as configuration flags, but
others (e.g., " What kinds of random mutations to apply to inputs?")
are typically baked into the fuzzer code itself. This paper describes
our over 12.5-CPU-year evaluation of the set of mutation operators
employed by the popular AFL++ fuzzer, including the havoc phase,
splicing, and REDQUEEN, exploring the impact of adjusting some of
those unexposed configurations.

In this experience paper, we propose a methodology for deter-
mining different fuzzers’ behavioral diversity with respect to branch
coverage and bug detection using rigorous statistical methods. Our
key finding is that, across a range of targets, disabling certain mu-
tation operators (some of which were previously “baked-in” to the
fuzzer) resulted in inputs that cover different lines of code and re-
veal different bugs. A surprising result is disabling certain mutators
leads to more diverse coverage and allows the fuzzer to find more
bugs faster. We call for researchers to investigate seemingly simple
design decisions in fuzzers more thoroughly and encourage fuzzer
developers to expose more configuration parameters pertaining to
these design decisions to end users.

CCS Concepts

- Software and its engineering;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA °24, September 16-20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0612-7/24/09

https://doi.org/10.1145/3650212.3680387

1631

of Fuzzer Mutator Performance

Luis Pina
University of Illinois at Chicago
Chicago, IL, USA
luispina@uic.edu

Jonathan Bell
Northeastern University
Boston, MA, USA
j.bell@northeastern.edu

Keywords
empirical studies, fuzzing evaluation, mutators

ACM Reference Format:

James Kukucka, Luis Pina, Paul Ammann, and Jonathan Bell. 2024. An
Empirical Examination of Fuzzer Mutator Performance. In Proceedings of
the 33rd ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA °24), September 16—20, 2024, Vienna, Austria. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3650212.3680387

1 Introduction

Fuzz testing, or fuzzing, is an automatic testing technique that
works by repeatedly mutating inputs and observing changes in
coverage. It selects inputs that increase coverage and drops inputs
that do not. Fuzzing is widely used by researchers and practitioners
to find bugs and vulnerabilities. In fact, the most popular coverage-
guided fuzzer, AFL [44], has found thousands of bugs in hundreds of
different software projects, including critical technologies such as
OpenSSL and the Linux Kernel. Naturally, as a result of this success,
both industry and academia have actively contributed to novel
fuzzing research over the past decade. There are currently hundreds
of fuzzers published in top-tier security, software engineering, and
hacker conferences [9, 15, 21, 30, 37-40, 44]. Fuzzer improvements
are made incrementally, with most novel fuzzers being some sort
of a derivative of another successful fuzzer.

One of fuzzing’s main strengths is its sheer speed, with hundreds
or thousands of different inputs executed per second. Typically, the
novelty in fuzzer development is a matter of guiding the search
over the input space, proposing some novel mutator [34, 39], instru-
mentation [27, 35], or schedule optimization technique [11, 19, 47].
Mutators are important to guide the fuzzer toward inputs that re-
veal more coverage and, eventually, bugs. Fuzzers typically employ
many different types of mutators, with different weights associated
with each mutation. Furthermore, selecting which mutator to use
is typically non-deterministic and follows a set of heuristics. How-
ever, rigorously evaluating all of the nuanced design decisions that
go into constructing a fuzzer is hard. Which mutators should be
used, and what probability weights should be assigned to each?
How quickly should an input’s scheduling power decay? Each new
fuzzing technique proposes a particular answer to these questions
and empirically evaluates its approach as a combination of all the
proposed changes that shows improvement over previous work.
However, fuzzers are inherently probabilistic, and, as a result, a
sound evaluation is extremely time and resource-intensive: best
practices call for evaluations that take decades of CPU time [26, 31].

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0009-0009-9847-7897
https://orcid.org/0000-0003-4585-5259
https://orcid.org/0009-0002-8470-2917
https://orcid.org/0000-0002-1187-9298
https://doi.org/10.1145/3650212.3680387
https://doi.org/10.1145/3650212.3680387
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3650212.3680387&domain=pdf&date_stamp=2024-09-11

ISSTA °24, September 16-20, 2024, Vienna, Austria

Understanding precisely how each individual feature interacts with
each other is challenging, and as a result, many of these design
decisions that “just work” are left unevaluated as long as the over-
all fuzzer performance appears to be “good enough.” Furthermore,
attempts to optimize these design decisions in one or more areas
(e.g., mutation) [30, 41] have been eclipsed through improvement
in fuzzer scheduling or efficiency [32]. Therefore, it is important to
understand the individual effects of such design decisions before
investing time and resources into optimizing them.

A concrete example of one under-explored design decision is
the mutation stage of the popular fuzzer AFL++ [19]. The mutation
stage generates new inputs by making changes to interests that
were previously found to be “interesting” and employs three high-
level operations: havoc, splicing, and REDQUEEN [10]. The havoc
stage repeatedly applies up to six different types of mutators to
an existing input in an effort to generate a new, interesting input:
bit flips, overwrites with random and “interesting” integers, block
deletion, block duplication, and arithmetic operators. REDQUEEN
leverages additional lightweight compile-time instrumentation to
map input bytes to comparison operators throughout a program’s
runtime and mutate over those. Splicing merges two inputs together
at a randomly selected point. AFL++ exposes REDQUEEN and splic-
ing to the end-user in the form of environment variables, but all
other havoc mutators are not individually controllable (they are
all either on or off). Despite recent work on the overall impact of
havoc as a whole [41], we still do not understand which mutators
are effective in which circumstances or why. As a consequence,
improving current havoc techniques is challenging due to the lack
of foundational knowledge about the effectiveness of each muta-
tion. To our knowledge, no fundamental study has been conducted
on the effectiveness of these mutation operators, both singularly
and in conjunction with each other, for finding bugs and achieving
branch coverage.

A poorly performing mutation strategy can affect the fuzzer’s
output in different ways. Generating uninteresting inputs - i.e., those
that do not reveal new coverage - simply wastes the fuzzer’s effort,
making it take longer to find the same coverage and discover the
same bugs. Generating poor quality inputs can guide the fuzzer
towards low coverage improvements and away from finding bugs.
Furthermore, discovering the relationship between input quality
and fuzzer performance is very challenging. As a consequence, dis-
abling mutations completely may lead to better fuzzer performance.

In this experience paper, we evaluate the relative efficacy of
each mutator in isolation and compare their effectiveness against
baseline AFL++. We first modify the baseline fuzzer AFL++ to en-
able/disable each havoc mutator independently and integrate this
modified AFL++ into the Magma ground-truth fuzzing benchmark
platform, where we expose the havoc mutations and splicing and
REDQUEEN to the end-user. We conducted an extensive evaluation,
using over 12.5 CPU-years of computation (Section 4). Surprisingly,
our results suggest that disabling mutators actually results in better
overall results based on the type of fuzzing target. To shed more
light on the relationship between mutators and bugs found, we
describe a deep dive into two known bugs that are reached and/or
triggered more effectively by disabling mutators.

Based on our observations, we recommend a set of best practices
for fuzzer developers in evaluating the impact of seemingly simple

1632

James Kukucka, Luis Pina, Paul Ammann, and Jonathan Bell

Table 1: Categories of mutations that we toggle in our exper-
iments. The “Lever” is the abbreviation that we use to refer to this
mutator in our evaluation. Mutation operator names are defined in
the AFL++ source code.

Lever Mutation Type
N HAVOC_USE_INSERT

Mutation Operators

EXTRA_OVERWRITE
EXTRA_INSERT
DELETE

RANDS

CLONE
OVERWRITE_COPY
OVERWRITE_FIXED
ARITHS
ARITH16_/+/BE
ARITH132_/+/BE
INTERESTINGS
INTERESTING16/BE
INTERESTING32/BE
FLIP BIT1

HAVOC_USE_DELETE
HAVOC_USE_BLOCKOPS

HAVOC USE_ARITHMETIC

HAVOC USE_INTERESTING

HAVOC_USE_BITFLIP

design decisions (Section 5), as well as how to best expose these
features to end-users. We also recommend best practices for fuzzer
users to enable or disable particular mutations based on the type of
target they are interested in testing. We call on the fuzzing commu-
nity to study and expose additional fuzzer configuration options,
which have been hard-coded into the core fuzzing loop until now,
thus enabling a broader range of studies on their effectiveness. We
believe that our study paves the way for a large body of future work
on the efficacy of mutators within fuzzer design, dynamic tuning
of mutators throughout a fuzzing campaign, and improving on the
practicality of mutator evaluation in terms of time and resources
required.
In summary, this paper makes the following contributions:

e We describe the design and implementation of an evaluation
prototype on top of AFL++ that exposes previously “hard-
coded” configurations;

We describe a rigorous over-12.5-CPU year evaluation of
AFL++ mutators: havoc, REDQUEEN, and splicing, and show
that disabling mutators can actually result in statistically
significantly better coverage and increased bugs found when
compared to baseline AFL++ based on the type of target;
We suggest best practices for fuzzer developers and
researchers when determining the efficacy of new fuzzer
mutators.

2 Background

Popular feedback-directed fuzzers like AFL/AFL++ [19, 44], lib-
fuzzer [29], hongfuzz [22], and their derivative variants all contain
a similar core fuzzing loop. The fuzzer begins with a corpus of seed
inputs (provided by the user or generated randomly) and then en-
ters a loop that selects an input from the current corpus, mutates it,
and executes it. The fuzzer relies on feedback from execution (e.g.,
coverage or other dynamic analysis) to decide on future input se-
lection and mutation. Through this procedure, the fuzzer gradually

An Empirical Examination of Fuzzer Mutator Performance

evolves a corpus of inputs covering the application’s behavior and,
ideally, detects bugs. In this section, we provide a brief background
on the three main ways that AFL++ mutates its inputs, as they are
what we focus on in our evaluation.

2.1 Havoc

Havoc was first introduced in the seminal fuzzer AFL [44] and
is a series of pseudorandomly stacked mutation operators. The
core AFL algorithm can be separated into two mutation stages
— deterministic and non-deterministic. The deterministic phase
applies a series of mutations sequentially over candidate fuzzing
inputs. These include walking sequential bitflips (i.e., iterating over
the file in a fixed interval, namely bits or bytes), walking sequential
byteflips, simple arithmetic operations, and insertion of “interesting
values” (e.g., minimum/maximum integers, zeroes) [43]. Havoc is
a non-deterministic stage that takes place after the deterministic
stage fails to yield any new branch coverage utilizing a corpus
of candidate fuzzing inputs. In AFL++, the deterministic stage is
disabled by default, so havoc is the true workhorse of mutation in
AFL++. The havoc algorithm consists of a pseudorandom stacking
of the following mutations:

(1) Single-bit flips

(2) Attempts to set “interesting” bytes, words, or double words

(considering both endians)
(3) Addition or subtraction of small integers to bytes, words, or
double words (considering both endians)

(4) Completely random single-byte sets

(5) Deletion of entire blocks of bytes

(6) Block duplication via overwrite or insertion

(7) Block memset to a constant value (zero or non-zero)

The number of times mutations are stacked is a pseudorandomly
chosen power of two that is configured within the respective fuzzer’s
source code. In AFL++, the maximum number of stacked mutations
within a single mutation iteration is 2%, or 16. In early implemen-
tations of havoc, the distribution of mutation operators was uni-
formly random, but AFL++ introduced bias [19], as the developers
explain: “Based on a fair amount of testing, the optimal execution
path yields appear to be achieved when the probability of each
operation is roughly the same; the number of stacked operations
is chosen as a power-of-two between 1 and 64; and the block size
for block operations is capped at around 1 kB” [43]. The bias used
in AFL++’s havoc mutations’ probabilities suggests that weighting
them equally may actually not provide the optimal execution yield,
which makes havoc mutations a prime target for evaluation. AFL
(and AFL++) hard-codes parameters for the mutation stack size
(how many mutators to apply at once), the size of each block that
is mutated, and the probabilistic weights of each mutator. Note that
this is not true when AFL++ is run in MOpt mode [30], but eval-
uating against MOpt mode is outside the scope of this evaluation,
as we seek to understand the effect of individual mutations before
attempting to optimize their use.

1633

ISSTA °24, September 16-20, 2024, Vienna, Austria

2.2 REDQUEEN

1 if((uint64)input == (uint64)"DEADBEEF")
2 panic () ;

Listing 1: Illustrative example of a comparison that may be
tracked by REDQUEEN (adapted from [10])

The REDQUEEN strategy attempts to find interesting byte values
by tracking comparisons as the target executes. For instance, con-
sider the code in Listing 1. Using random mutations (e.g., havoc de-
scribed in Section 2.1) gives the fuzzer a minuscule chance of finding
the sequence of bytes "DEADBEEF" that reveals the bug. Consider-
ing that the initial input string is "AAAAAAAABBBBBBBBAAAAAAAA",
REDQUEEN first tracks the comparison "AAAAAAAA" == "DEADBEEF";
finds the compared value "DEADBEEF"; and produces mutations:
"CEADBEEF", "EEADBEEF", and so on. It then places these muta-
tions at the point in the input where "AAAAAAAA" occurs. Since
there are multiple points in our input where that could happen,
REDQUEEN uses a process called “colorization” to map the mutation
to a specific 8-byte point in the input. Colorization replaces the
interesting input pattern (i.e., "AAAAAAAA") with different random
strings (e.g., "IEDHFGEYBBBBBBBBLAKSIBXJ"); and observes which
random string makes it to the comparison being tracked. In this
case, the next comparison is "IEDHFGEY" == "DEADBEEF"), which
reveals the occurrence of "AAAAAAAA" that should be replaced. The
REDQUEEN strategy is enabled by default in LLVM mode [8] of
AFL++ and is referred to in AFL++ documentation as cmplog. More
detailed information about the internals of REDQUEEN can be found
in the original paper [10].

2.3 Splicing

The splicing mutation is a means of combining two parent inputs,
with the goal of producing a more interesting result. For example,
consider the two string inputs "ABCDEF" and "UVWXYZ". A possible
splicing starts by choosing a midpoint at random, using the first
input up to the midpoint, and then using the second input after the
midpoint. In our example, selecting a midpoint value of 2 results
in the spliced input "ABWXYZ". AFL++ performs splicing by taking
two parent inputs from the input queue and combining them at a
randomly selected midpoint [19]. Splicing is employed when havoc
does not find any new interesting inputs. At this point, two inputs
are spliced, and havoc is re-run on the spliced input.

3 Implementation

Modern fuzzers do not expose all possible parameters that control
each stage of mutation. Our implementation identifies such hard-
coded parameters, which we refer to as levers, and exposes them
to the user with configurable on/off flags. In this work, we focus
on three macro-level mutators — havoc, REDQUEEN, and splicing
— and then delve deeper into individual mutation steps within the
havoc mutator.

AFL++ groups havoc mutations into six specific categories. We
decided to use each category as a lever and implemented code to
toggle them on and off independently of each other. Table 1 de-
scribes each category and corresponding mutations. We configure
the levers via a six-bit string defined as an environment variable.
Each bit controls one mutation. For instance, 000000 indicates that

ISSTA °24, September 16-20, 2024, Vienna, Austria

havoc is totally turned off, and 111111 indicates that all mutations
are active (i.e.,, equivalent to the baseline AFL++ havoc mutator set).
All bit strings in between follow the order of Table 1, i.e., 100000
corresponds to category "N" being turned on and all others being
turned off, etc. We chose to expose these levers as an environmen-
tal variable as it is a simple mechanism compatible with existing
infrastructure for running fuzzing campaigns — i.e.,, the Magma
benchmarking framework [24].

We implement the levers themselves at compile time for two
main reasons. First, it does not introduce any overhead at runtime.
Second, and more importantly, it provides more compatibility with
the Magma benchmarking framework, as it builds the fuzzer at the
beginning of each run. The Magma benchmarking framework uses
a build script for each fuzzer, which we modified by adding code to
append a compiler preprocessor macro (using the gec -D flag) to the
AFL++ build command for each lever that was set to 1. Then, we
modified the main fuzzing loop of AFL++, surrounding the various
havoc stage mutation categories with #ifdef blocks. As a result, if
a mutation category is disabled, it is not compiled into the current
AFL++ variant that Magma is using.

We also used an environment variable to expose REDQUEEN as a
lever — NO_CMPLOG. As before, Magma uses the lever in the build
stage to specifically build AFL++ without REDQUEEN instrumen-
tation support. As the AFL++ codebase already had support for
disabling REDQUEEN at build time, our changes were limited to
Magma.

The ability to turn splicing on or off is also already exposed by
AFL++ as an environment variable — NO_SPLICING — which is on
by default. Magma already supports controlling splicing via the
environment variable and requires no extra changes.

4 Evaluation

Our empirical evaluation aims to answer the high-level question
of whether the levers we selected impact the fuzzer’s behavior.
We evaluate performance using three overall metrics: number of
branches covered, bugs reached, and bugs triggered. When com-
paring different fuzzer configurations, we consider not only the
number of bugs reached or triggered by each fuzzer but also which
bugs are reached or triggered and how often they are reproducible.
As described in Section 3, we implement levers to enable/disable
each havoc mutator, as well as REDQUEEN and splicing in isola-
tion Rather than empirically evaluate every combination of levers,
we restrict our evaluation to a macro-scale to evaluate the effects
of havoc, splicing, and REDQUEEN by default and then perform a
more fine-grained of only configurations with a single havoc mu-
tator enabled at a time (with splicing and REDQUEEN remaining
untouched). Examining the diversity of executions that result from
different combinations of mutators may be exciting future work.
Specifically, in this evaluation, we seek to answer the following
research questions:

RQ1: Is there a significant difference in coverage between var-
ious AFL++ configuration combinations of normal Havoc,
REDQUEEN and splicing?

RQ2: Is there a statistically significant difference in the bugs
reached and triggered by various AFL++ configuration com-
binations of normal Havoc, REDQUEEN, and splicing?

1634

James Kukucka, Luis Pina, Paul Ammann, and Jonathan Bell

RQ3: Is there a statistically significant difference in coverage be-
tween individual havoc mutators, both amongst themselves
and compared to baseline normal havoc? Are there bugs that
only individual havoc mutators can find?

4.1 Methodology

Evaluation Suite: We follow Klees et al’s guidelines for best prac-
tices in fuzzer evaluation [26], choosing an evaluation suite with
real-world target programs containing realistic, relevant bugs. We
considered the FuzzBench [31] dataset, which is a curated set of
open-source projects with fuzz harnesses that is effective for com-
paring fuzzers on code coverage but does not provide a ground-truth
for bugs in the programs. Instead, we used the Magma ground-truth
dataset [24], which consists of 21 benchmark programs collected
from 8 target libraries. Magma contains 118 bugs, each of which
was sourced from real bug reports that have been previously found
and fixed by developers. Since each bug’s location is known in
advance, Magma’s fuzzing infrastructure reports which bugs were
triggered by each experiment and which bugs were reached (but
not triggered). Reaching a unique bug simply means that the fuzzer
was able to cover the code that contains a vulnerable condition,
but it does not mean that the vulnerable condition was satisfied.
Triggering a bug implies that the fuzzer was able to satisfy a vul-
nerable condition, thereby creating a defect-revealing input that
results in a program crash or hang (e.g., an integer must be 0 to
cause a logic bug). Magma’s fuzzing infrastructure also collects and
reports branch coverage from each experiment. Table 2 shows a
summary of the benchmark libraries and program versions and the
file types they process.

Experiment Design and Execution: To characterize the effect
of each lever and answer our research questions, we conduct fuzzing
campaigns with each of the following configurations of AFL++
v3.15a:

(1) AFL++: Unmodified AFL++. All levers enabled

(2) AFL++gR: Havoc enabled, splicing disabled, REDQUEEN en-
abled

(3) AFL++gs: Havoc and splicing enabled, REDQUEEN disabled

(4) AFL++Rs: Havoc disabled, splicing and REDQUEEN enabled

(5) AFL++pq: Havoc enabled, splicing and REDQUEEN disabled

(6) A,B,D,F,LLN: Each of the havoc mutator levers enabled, one
at a time (6 configurations), REDQUEEN and splicing enabled

Following best practices, each experiment consists of 20 repeated
trials on each approach on each of the 21 benchmarks, each running
for 24 hours [26]. Hence, in total, this experimental design required
(1+1+1+1+1+6)x20X21x24=110,880 hours (12.65 years)
of CPU time.! We execute our evaluation on a private cluster of
Ubuntu 20.04 virtual machines, each with 4 vCPUs and 16GB RAM.
We leverage the SLURM [42] utility on our computing cluster in
conjunction with Magma to be able to efficiently run hundreds of
configurations in parallel across the cluster of virtual machines
while also being fault-tolerant. We run a single experiment at a
time in each VM, ensuring that the overall hardware utilization and
quality of service per VM remain constant. Each experiment runs

These experiments were conducted at periods of low demand for resources. The
cluster is powered entirely by renewable energy sources.

An Empirical Examination of Fuzzer Mutator Performance

ISSTA °24, September 16-20, 2024, Vienna, Austria

Table 2: Benchmark target libraries and programs, adopted from Magma [24].

Target Programs Version File Type
libpng libpng_read_fuzzer 1.6.38 PNG
libsndfile sndfile_fuzzer 1.0.29 Audio files

e tiff_read_rgba_fuzzer,
libtiff tiffep 4.1.0 TIFF
libxml2 11bxml2_xm1_read._memory_fuzzer, 2.9.12 XML Documents

xmllint
asnl, asniparse,
openssl client, server, 3.0.0 Binary blobs
bignum, x509
sqlite3 sqlite3_fuzz 3.32.0 SQL queries
php exif, Ison, 8.0.0-dev Various
parser, unserialize

pdf_fuzzer, pdfimages,
poppler pdftoppm 0.88.0 PDF
lua lua 5.4 Lua scripts

with an initial seed corpus supplied by the Magma project; experi-
ments do not share corpora. Our replication package includes the
container used to run these experiments, the raw output provided
by each execution of Magma, and processed results [28]c.
Statistical Methodology: Given the probabilistic nature of

fuzzing, it is important to apply a statistically rigorous methodology
to determine if one fuzzer configuration truly behaves differently
from another. As described above, we conducted 20 repeated trials
of each fuzzer configuration on each target program. Each trial
consists of multiple fuzzer executions (executed in parallel, one
execution per VM), and we aggregate the branch and bug coverage
of those multiple executions to define the coverage of that trial.
To compute the total branch coverage of each configuration on
a program target, we collect the average branch coverage across
all trials. Without assuming normality, we apply a Mann-Whitney
U-test to determine if the mean number of branches covered by
each fuzzer configuration significantly differs from the baseline. In
line with prior work, we show the total number of bugs detected by
each approach. We also show the number of bugs that are reliably
triggered by one fuzzer over another, computed by again using
Fisher’s exact test to determine if the number of trials in which
that fuzzer configuration covered the bug is statistically significant
from the baseline approach. We accept a result as significant only
if p < 0.01. A recent survey on fuzzing evaluation by Shloegel et
al.[36] calls for employing rigorous statistical methods in fuzzing
evaluation but does not report on any fuzzing publications that do
so for bugs. To the best of our knowledge, our evaluation is the first
to propose this statistical method for fuzzers’ bug-finding abilities.

4.2 ROQ1:Is there a significant difference in
coverage between various AFL++
configuration combinations of normal
Havoc, REDQUEEN, and splicing?

Table 3 shows the total branch coverage for the configurations out-
lined in Section 4.1. Shaded cells represent statistically significant

1635

differences in total coverage when compared to the baseline AFL++.
Cells shaded red indicate less coverage than AFL++, green indicates
more. There are some noteworthy observations that can be made
by quickly glancing at this table:

o The results suggest that including havoc has a statistically
significant effect on the amount of code coverage that the
fuzzer is able to obtain within a 24-hour period, as there
is statistically significantly less coverage for the AFL++gg
configuration in 17/21 target programs.

Turning off splicing suggests to either result in statistically
insignificant differences in coverage, or, in the case of 7 target
programs, statistically significantly improved coverage when
compared to baseline AFL++. AFL++y behaves similarly to
AFL++gR on most targets, resulting in statistically signifi-
cantly more coverage than baseline AFL++ in 5/21 targets.
However, not only does AFL++yp statistically significantly
improve coverage when compared to AFL++ in more targets,
it is the best performing in terms of the targets that it does
improve significantly (with one exception — sqlite3 — which
AFL++y performs slightly better on).

For some targets (asnlparse and bignum within openssl), the
coverage is the same for all configurations. We believe the
observed result is likely due to the cryptographic nature of
the targets and how the fuzzer may struggle to produce valid
inputs. This is a signal to switch strategies or possibly create
a new fuzzing harness.

We note that Table 3 does not provide any insight into the
branches’ diversity. We show those results when we examine the
bug-finding capabilities of the various lever configurations in Sec-
tion 4.3.

ISSTA °24, September 16-20, 2024, Vienna, Austria James Kukucka, Luis Pina, Paul Ammann, and Jonathan Bell

Table 3: Total branch coverage per program. Cells that are not shaded do not represent a statistically significant difference in total
coverage (Table 4 show exact p-values). Cells shaded red indicate statistically significantly less coverage than AFL++, and blue indicates
more. Values that are bolded indicate a large effect (A12 > 0.71). All Ay, values are available in our supplementary artifact).

All Levers Enabled Individual Havoc Levers Two Levers Enabled One Lever Enabled
Target Program ‘ AFL++ ‘ A B D F 1 N | AFL++rs AFL++gs AFL++hR ‘ AFL++yg
libpng libpng_read_fuzzer 1,513 1,250 1,221 1,103 1,137 1,143 797 1,272 1,274 1,524 1,268
libsndfile sndfile_fuzzer 3313 | 2,984 2,979 2,878 2,920 3,017 2,174 2,785 3,046 3,364 3,116
libtiff tiff_read_rgba_fuzzer 3,446 | 3,223 3,122 2,167 2,626 2,613 932 1,440 3,497 3,572 3,463
libtiff tiffcp 4,882 4,435 4,549 3,117 4,127 4,264 1,528 2,820 4,780 4,906 4,846
libxml2 libxml2_xml_read... 13,038 | 12,423 13,094 12,642 12,360 12,285 9,931 11,080 13,045 13,146 13,132
libxml2 xmllint 13,079 | 12,376 13,043 12,626 12,284 12,234 10,250 11,860 13,051 13,177 13,166
lua lua 4,838 4,566 4,727 4,765 4,590 4,460 4,070 4,650 4,839 4,932 4,924
openssl asnl 9,937 9,929 9,522 9,849 9,894 9,927 9,750 9,763 9,926 9,926 9,946
openssl asnlparse 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240
openssl bignum 1,245 1,245 1,245 1,245 1,245 1,245 1,245 1,245 1,245 1,245 1,245
openssl client 14,167 | 14,123 14,164 14,080 14,126 14,163 14,006 14,141 14,177 14,175 14,173
openssl server 14,229 | 14,229 14,230 14,209 13,560 14,240 14,204 14,220 14,228 14,225 14,229
openssl x509 7,910 7,908 7,902 7,873 7,912 7,911 7,868 7,901 7,910 7,915 7,911
php exif 4,738 4,705 4,696 4,653 4,660 4,630 4,199 4,465 4,748 4,742 4,742
php json 4,328 4,046 4,266 4,141 4,079 4,143 3,918 4,074 4,329 4,329 4,324
php parser 18,347 | 18,167 18,402 17,826 18,015 17,742 16,055 18,022 18,334 18,407 18,392
php unserialize 5,501 5,423 5,472 5,090 5,366 5,268 4,700 5,212 5,510 5,521 5,526
poppler pdf_fuzzer 14,571 | 14,737 14,526 13,614 14,403 14,298 10,933 12,532 14,626 14,390 14,528
poppler pdfimages 11,354 | 11,083 11,105 10,056 10,916 10,736 7,663 9,870 11,336 11,320 11,383
poppler pdftoppm 12,559 | 12,661 12,478 11,750 12,432 12,360 8,870 10,697 12,636 12,725 12,718
sqlite3 sqlite3_fuzz 21,776 | 15,534 19,838 21,103 16,714 11,080 5,029 1,849 21,985 22,644 22,873

Table 4: P-values for the difference in total branch coverage per program as compared to the baseline AFL++ measure. These
values support the comparisons displayed in Table 3.

Individual Havoc Levers Two Levers Enabled One Lever Enabled
Target Program A B D F I N | AFL++rs AFL++ys AFL++hRr AFL++y
libpng libpng_read_fuzzer 0.0313 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0132 0.0037 0.7861 0.0071
libsndfile sndfile_fuzzer <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.2503 0.0514
libtiff tiff_read_rgba_fuzzer <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.3369 0.0149 0.8604
libtiff tiffcp <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0106 0.5884 0.3167
libxml2 libxml2_xml_read... <0.0001 2e-04 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.6456 <0.0001 <0.0001
libxml2 xmllint <0.0001 0.0619 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.1134 2e-04 le-04
lua lua <0.0001 <0.0001 0.006 <0.0001 <0.0001 <0.0001 <0.0001 0.8817 <0.0001 <0.0001
openssl asnl 0.4093 3e-04 <0.0001 <0.0001 0.2912 <0.0001 <0.0001 0.2286 0.1593 0.2791
openssl asnlparse = = = = = 0.1624 = = = =
openssl bignum - - - - - - - - - -
openssl client <0.0001 0.946 <0.0001 <0.0001 0.3231 <0.0001 0.0039 0.49 0.5161 0.7453
openssl server 0.5403 0.9565 <0.0001 0.0031 <0.0001 <0.0001 <0.0001 0.6714 0.1362 0.8265
openssl x509 0.4239 <0.0001 <0.0001 0.1571 0.3486 <0.0001 <0.0001 0.9566 3e-04 0.4231
php exif <0.0001 0.0933 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0383 0.3501 0.4647
php json <0.0001 0.3499 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.7043 0.5509 0.0831
php parser <0.0001 4e-04 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.4168 <0.0001 8e-04
php unserialize <0.0001 0.0699 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.3039 0.0764 0.0514
poppler pdf_fuzzer 0.0498 0.0411 <0.0001 0.009 0.0013 <0.0001 <0.0001 0.3301 0.2674 0.5978
poppler pdfimages <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 1 0.8711 0.4327
poppler pdftoppm 0.1166 le-04 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.3577 0.0066 0.0038
sqlite3 sqlite3_fuzz <0.0001 <0.0001 0.0207 <0.0001 <0.0001 <0.0001 <0.0001 0.1404 <0.0001 <0.0001

Table 5: Reachability and triggerability of bugs per-configuration. Green means at least one bug is reached/triggered statisti-
cally more frequently, red means at least one bug is less, blue means at least one is more and at least one is less.

Bugs Reached Bugs Triggered
target AFL++ Mopt AFL++ygs AFL++gr AFL++gs AFL++y | AFL++ Mopt AFL++ps AFL++ygr AFL++grs AFL++y
libpng 6 6 6 6 6 6 3 2 2 4 1 3
libsndfile 8 8 8 8 6 8 7 7 7 7 4 7
libtiff 11 11 11 11 8 11 8 7 8 8 4 8
libxml2 9 9 8 9 8 9 6 6 4 6 % 7
lua 2 2 3 4 1 2 1 1 1 2 1 2
openssl 10 10 10 10 10 10 5 4 4 5 3 4
php 5 5 5 5 5 5 3 3 3 3 3 3
poppler 16 16 16 16 14 16 10 10 10 9 4 11
sqlite3 15 15 16 15 0 16 7 4 7 8 0 7
Total 82 82 83 84 58 83 50 44 46 52 22 52

1636

An Empirical Examination of Fuzzer Mutator Performance

AFL++_HR

AFL++ RS

AFL++ H

Figure 1: Bugs reached for baseline AFL++, AFL++yR,
AFL++yg, AFL++Rg, and AFL++yg

AFL++_HR

AFL++ RS

AFL++ H

Figure 2: Bugs triggered for baseline AFL++, AFL++yR,
AFL++yg, AFL++Rg, and AFL++yg

Answer to RQ1: On a majority of targets, disabling havoc
results in statistically significantly fewer branches covered
than enabling havoc. Disabling splicing seemed to result in an
equal amount of coverage or statistically more code coverage
for all of the target programs. AFL++ followed a similar
trend but did not increase coverage as much as AFL++gg.

4.3 RQ2:Is there a statistically significant
difference in the bugs reached and
triggered by various AFL++ configuration
combinations of normal Havoc,
REDQUEEN, and splicing?

Figures 1 and 2 show Venn diagrams of bugs reached and triggered,

respectively, for configurations 1-5 described in Section 4.1. We

1637

ISSTA °24, September 16-20, 2024, Vienna, Austria

note that generating an input that triggers a bug does not neces-
sarily imply increased branch coverage, but it does mean that the
fuzzer produced an input with an unexpected value.

As Figure 1 shows, a majority of configurations were able to
reach all of the bugs reachable amongst the configurations (81/85
or 95.29%), with a few outliers. The AFL++gg configuration was not
able to reach 23 of those bugs and was not able to find any unique
bugs, which indicates that turning havoc off severely hampers bug-
finding capability.

Interestingly, turning off splicing (AFL++HR) reached one unique
bug — LUA001 — which is a negation overflow that can lead to a
segmentation fault in getlocal and setlocal functions [7], also
reported as CVE-2020-24370. Figure 3 shows the actual location of
this bug in the lua code where. Functions setlocal and getLocal
call luaG_findlocal (Lines 202-208). In the code shown, the value
n in the comparison on Line 204 is passed directly from the sec-
ond argument of function setlocal to function luaG_findlocal.
Therefore, any call to setlocal with a negative value as the second
argument (e.g., setlocal (3,0x80000000) or setlocal(3,-1))re-
sults in a call to findvararg on Line 205 with the vulnerable condi-
tion. This is a very rare bug, as the fuzzer needs to mutate an input
that calls setlocal (or getlocal) and passes a negative value to
the second argument and does not violate the syntax of the func-
tion call. The odds of havoc finding a suitable input are minuscule.
Splicing may actually exacerbate the problem because combining
inputs may overwrite the call to setlocal. Further fuzzing of the
spliced input will not cover the code path that leads to this bug.
This type of bug is best suited for the REDQUEEN mutation, as it is
able to map the location of the comparison of n to a specific point
in an input and mutate there. Therefore, it makes sense that only
the AFL++yR configuration was able to reach this bug. Examining
Table 6, we can see that AFL++ypR yielded almost double the amount
of saved REDQUEEN inputs as baseline AFL++, indicating that it
is useful at revealing new coverage and diversifying the fuzzing
corpus. Additionally, the results suggest that REDQUEEN works in
concert with havoc, as AFL++yR generated 17% more inputs than
baseline AFL++. Furthermore, it appears that splicing may be an
overall detriment to lua fuzzing, as 0 splicing-derived inputs are
saved in the absence of havoc, and, when using AFL++yy, it gener-
ates the most saved inputs of any configuration. All configurations
with splicing enabled generate fewer saved inputs than those with-
out it (with one exception, AFL++gs, which indicates that havoc is
necessary to produce diverse inputs that increase code coverage).

Triggered bugs, shown in Figure 2, follow similar trends to
reached bugs: a majority of triggered bugs (43/57 or 75.43%) were
able to be triggered by every configuration. The AFL++gg configura-
tion triggered one unique bug — LUA003, or ANH003 in the original
Magma paper [24] — an APl inconsistency bug in lua. The AFL++yg
configuration triggered 1 unique bug -~ SQL007, or JCH220 in the
original Magma paper [24] — a null pointer dereference within
sqlite3. The AFL++p configuration triggered 3 unique bugs: (1)
XMLO006 (or CVE-2017-9048 [2]) — a stack-based buffer overflow
within libxml2, (2) LUA002 (or CVE-2020-24369 [5]) — a null pointer
dereference within lua, and (3) PDF004 (or CVE-2019-10873 [4]) —
a null pointer dereference within poppler.

A bug of particular interest is SQL007, triggered only by the
AFL++ys configuration in our evaluation but not triggered at all by

ISSTA °24, September 16-20, 2024, Vienna, Austria

James Kukucka, Luis Pina, Paul Ammann, and Jonathan Bell

Table 6: Total number saved, as well as number of inputs saved for each mutation type for the lua and sqlite3_fuzz target

program.
Target Program Configuration Total Inputs Saved Havoc Inputs Saved Splicing Inputs Saved ReEDQUEEN Inputs Saved
lua lua AFL++ 20363 14406 4776 1070
lua lua AFL++gs 17524 0 0 17413
lua lua AFL++yR 23949 21959 0 1878
lua lua AFL++yg 21305 16314 4879 0
lua lua AFL++y 25167 25054 0 0
sqlite3 sqlite3_fuzz AFL++ 49814 27297 12270 4912
sqlite3 sqlite3_fuzz AFL++gs 5951 0 0 616
sqlite3 sqlite3_fuzz AFL++pggr 53628 40714 0 7579
sqlite3 sqlite3_fuzz AFL++pg 51317 33929 12048 0
sqlite3 sqlite3_fuzz AFL++yg 55575 50235 0 0

+

¥

6 mmmm ldebug.c LC\

int nextra = ci->u.l.nextraargs;
if (n <= nextra) {

return “(vararg)";
}
}

const char *name = NULL
if (isLua(ci)) {
if (n < @)
return findvararg(ci, =-n, pos);
else

*pos = ci->func - nextra + (n = 1);

/* access to vararg values? x/

@@ -188,8 +188,8 @@ static const char xupvalname (const Proto *p, int uv) {

static const char xfindvararg (CallInfo *ci, int n, StkId xpos) {
if (clLvalue(s2v(ci->func))->p->is_vararg) {

/* generic name for any vararg */

@@ -202,7 +202,7 @@ const char xluaG_findlocal (lua_State %L, CallInfo *ci, int n, StkId x*pos) {

name = luaF_getlocalname(ci_func(ci)->p, n, currentpc(ci));

Figure 3: Location of CVE-2020-24370 from a Github patch commit [6]. This bug was reached by the AFL++gRr configuration
and is only reached when passing a negative value to the setlocal function within lua.

AFL++ in the original Magma paper [24]. To exercise this bug, the
input SQL statement must be a corrupted string having the form
"CREATE TABLE ... AS SELECT ...".Valid inputs to sqlite3_fuzz
are SQL statements, complicated strings without “magic values”
used in comparison operators that would make good use of

REDQUEEN. In this case, splicing and havoc are better suited to gen-
erate a string of that size and corrupt it, resulting in the null pointer
dereference. This claim is backed up by the types of saved inputs
for sqlite3_fuzz shown in Table 6, where for AFL++, REDQUEEN
inputs only account for approximately 10% of total saved inputs.
The AFL++yg total splicing inputs saved is comparable to that of
the baseline AFL++, but there are over 6000 more saved havoc in-
puts than that of AFL++; which indicates that AFL++ys was able
to make course-grained string mutations with splicing and havoc
was able to mutate them to reveal new coverage. This claim is also
supported by the fact that the AFL++rg configuration saved so few
inputs. Splicing on its own was not enough to reveal much new
coverage, and REDQUEEN clearly struggles to reveal new cover-
age on sqlite3_fuzz. Interestingly, despite finding this very unique
bug, AFL++yg did not have statistically significantly different total

1638

branch coverage when compared to baseline AFL++, which cor-
roborates the findings of B6hme et al. [12], where the fuzzers that
trigger more bugs do not necessarily cover more branches and
vice-versa.

Answer to RQ2: There are unique bugs that only certain
configurations can reach, as certain mutations have a higher
chance of finding those bugs. Time spent on other mutations
does not help in finding such unique bugs.

4.4 RQ3:Is there a statistically significant
difference in coverage between individual
havoc mutators, both amongst themselves
and compared to baseline normal havoc?
Are there bugs that only individual havoc
mutators can find?

Table 3 shows the coverage results for running each individual
havoc mutator in isolation, with REDQUEEN and splicing still en-
abled. Across the vast majority of targets, using an individual havoc

An Empirical Examination of Fuzzer Mutator Performance

Figure 4: Bugs reached for individual havoc mutators vs.
baseline AFL++

Figure 5: Bugs triggered for individual havoc mutators vs.
baseline AFL++

mutator provided either statistically insignificant coverage or pro-
duced statistically significantly less coverage than the baseline
AFL++. Furthermore, we performed statistical tests between the
individual havoc mutators and determined that there were no sta-
tistically significant differences between them.

Of course, as we learned in Section 4.3, it is important to also
consider bug-finding ability. Figures 4 and 5 show the bugs reached
and triggered, respectively, for each individual havoc mutator level
and baseline AFL++. According to Figure 4, no individual havoc
mutator configuration reached any unique bugs. However, Figure 5
shows that baseline AFL++ was able to trigger two unique bugs,
and the B configuration (block-operations-only in havoc) was able
to trigger two unique bugs as well. The two unique bugs that the
B configuration was able to trigger are: (1) PNG001 (or CVE-2018-
13785 [3]) — an integer overflow and resultant divide-by-zero in
libpng, and (2) PDF004 (or CVE-2019-10873 [4]) — a null pointer
dereference within poppler. Both of these bugs were also triggered

1639

ISSTA °24, September 16-20, 2024, Vienna, Austria

by configurations that leveraged havoc other than AFL++ (i.e., ,
AFL++yR and AFL++p, but not AFL++pg) in Section 4.3, which
suggests that REDQUEEN and/or splicing hampered the baseline
AFL++’s ability to trigger the bugs. The two bugs unique bugs that
AFL++ was able to trigger are: (1) PNG006 — a dangling pointer
bug in libpng [24], and (2) TIF008 (or CVE-2015-8784 [1]) — a heap
buffer overflow within libtiff. The fact that AFL++ uniquely covered
these two bugs suggests that interaction between individual havoc
mutators is beneficial for satisfying vulnerable conditions within
code. We discuss combinatorial relationships in Section 5.

Answer to RQ3: There is no statistically significant differ-
ence in number of branches covered between individual havoc
mutators. Across the vast majority of benchmark programs,
reducing havoc to an individual mutator resulted in statisti-
cally significantly less coverage than baseline AFL++. Upon
examining bugs, individual havoc mutators did not reach any
unique bugs, but one configuration did trigger two, as did
AFL++. This indicates that combinations of havoc mutators
are beneficial to triggering bugs.

5 Discussion

In this section, we discuss the ramifications of our results and
suggest best practices for developers and the fuzzing research com-
munity. We also discuss threats to validity and how we mitigate
such threats.

5.1 Implications

For developers using fuzzers: Based on the results of this eval-
uation, we advise developers of fuzzers to start by examining the
documentation of the fuzzer that they plan to use. As this study
shows, incorporating more features (in this case, levers) counter-
intuitively may not be the best approach for particular fuzzing
targets. Furthermore, our results suggest that splicing may waste
the fuzzer’s effort and guide it away from interesting inputs, as it
prevents the reaching and triggering of several potential vulnera-
bilities. When picking a new target to fuzz, we advise running a
shorter preliminary phase with as many fuzzer configurations as
possible for at least 24 hours to evaluate the efficacy of different
configurable parameters in each fuzzer used. The results can then
guide a much longer fuzzing campaign (which could be weeks or
longer). Such a preliminary stage can shed light on which tools and
configurations are more effective at achieving more code coverage
and potentially finding more bugs for each particular target. Ad-
ditionally, we advise developers to be skeptical of approaches that
claim generality or an “optimal" approach, as “optimal" approaches
may be only valid for a limited period of time, and alternative
fuzzing strategies may prove to be more performant in the gen-
eral case. This is evident in the example of HavocMAB vs. AFL++.
HavocMAB sought to optimize the havoc stage of AFL by treating
it as a multi-armed-bandit problem [41]. However, recent studies
have found that AFL++’s latest features outperform HavocMAB in
terms of coverage and bug-finding ability because it is based on
AFL rather than AFL++ [32].

For the fuzzing research community: This empirical study
characterizes a large body of future work that the fuzzing research

ISSTA °24, September 16-20, 2024, Vienna, Austria

community should be studying. Incremental fuzzing improvements
are validated using a significant evaluation or study to determine
a fuzzer’s performance. However, new contributions devote little
attention (if any) to important design decisions that end up being
hard-coded in the final fuzzer. Such decisions should be evaluated
in detail, taking each different target into account. We call on the
fuzzing community at large to focus more on examining on these
design decisions so that we may understand the current state of the
art in all aspects of fuzzing — whether that be mutator selection,
power scheduling, or some other aspect of the fuzzing algorithm.
Additionally, when publishing new fuzzers, researchers should seek
to document and expose as many design decisions as possible to
the end-user in the form of levers — whether as compiler flags,
environment variables, or configuration files. In this way, we can
avoid the pitfalls of relying on community-accepted means of doing
these things that are simply “baked-in" Once we understand seem-
ingly simple design decisions, we can focus on broader research
questions: How do we determine what are appropriate rewards
to use for optimizing the selection of levers dynamically? What
features of target programs should we be examining to determine
how to alter fuzzing strategies dynamically? How do we automate
this? How do we reuse information that we’ve learned to adapt
to new versions of fuzzing targets or fuzzing targets that process
similar inputs? These are all questions whose answers will improve
the usability and adoptability of fuzzers in the future. In completing
this study, we call on the fuzzing community at large to prioritize
research towards this fundamental understanding so that we may
answer these questions.

Additionally, we recognize that significant computing resources
are required to perform a statistically significant evaluation, as
shown in our evaluation which took over 12.5 years of CPU time.
To evaluate all possible combinations of havoc mutators in our
evaluation, we need to multiply that evaluation time approximately
sixfold, as there are 64 combinations of individual havoc mutators.
This is obviously quite costly for the everyday fuzzer developer,
especially when real-world design decisions could be much more
complicated. As such, we call on the community to conduct research
on how to perform these evaluations more efficiently while main-
taining statistical significance through heuristics or other means.

5.2 Threats to Validity

One concern of any experimental fuzzer evaluation is whether or
not the results generalize to other combinations of levers and/or
programs — i.e. will the findings here hold true if tested on new
programs and with new levers? We posit that even if it does not, we
have a strong result in that deactivating various mutations within
the AFL++ fuzzing loop results in unique bugs being discovered and
triggered. We expect that further exploration of more combinations
of these same levers will continue to show interesting results. We
sought to make our evaluation as simple as possible to illustrate
this fact and avoid combinatoric explosion with regard to levers.
Whether or not this generalizes to other target programs, we believe
that the set of benchmarks shown in this evaluation represents a
broad suite of targets, including targets that process highly and
loosely structured inputs. We believe that the evaluation issue we

1640

James Kukucka, Luis Pina, Paul Ammann, and Jonathan Bell

are studying is a core issue that applies to any target, and we have
already shown that results will vary across targets.

Another question that may arise from our evaluation is whether
our results are statistically sound. To ensure that they are, we utilize
best practices to ensure results are statistically significant with a
high confidence interval (within 1%). When we present our data, we
use appropriate statistical tests to compare means for differences.
A rigorous statistical methodology for which unique branches and
bugs are covered was something out of the scope of this evaluation.
Instead, we use unique bugs reached and triggered as an illustrative
example because unique reached bugs imply unique branches being
covered. For future work studying unique branches in more detail,
we advocate for rigorous, conservative statistical approaches, in-
cluding using strategies such as the Bonferoni procedure to adjust
p-values based on the number of comparisons made.

6 Related Work

Mutator Selection in Fuzzing: Prior work in mutation selection
within a fuzzing run treats the problem as an optimization prob-
lem. MOPT [30] utilizes a customized Particle Swarm Optimization
algorithm to find the optimal selection probability distribution of
mutation operators with respect to fuzzing effectivenes. It achieves
this by having multiple modules both perform fuzzing and continu-
ously evaluating coverage instrumentation and program outputs
to dynamically update the mutation scheduling probability distri-
bution (i.e., the “bias" that AFL++ places on each mutation opera-
tor). HavocMAB [41] seeks to achieve a similar goal by modeling
the mutator selection process as a multi-armed bandit problem. It
splits mutation operators into two categories - chunk mutators and
unit mutators, and determines the category that would yield the
maximum reward for each mutation cycle. After that, individual
mutators are chosen uniformly randomly from the category. We
chose not to compare AFL++ mutators to HavocMAB or MOPT
because HavocMAB’s evaluation determined that it outperformed
MOPT [41], and recent studies have found that AFL++’s latest fea-
tures outperform HavocMAB (even not when running MOpt mode),
which is based on AFL rather than AFL++ [32]. The DARWIN
fuzzer [25], published recently, uses an evolutionary algorithm to
constantly modify the mutator selection algorithm in accordance
with a reward score for the last mutation. This is similar to the way
AFL++ itself selects inputs, as it assigns a reward score based on
the previous input’s code coverage.

Ensemble Methods: Swarm testing [23] was proposed in 2012
by Groce et al. as a way to improve the diversity of test cases
during random testing, and is an inspiration for our evaluation. The
idea behind swarm testing is not to create monolithic test cases
that attempt to exercise all features of a program but rather to
create a “swarm" of them that have some features omitted. Groce
et al. showed that this leads to a better exploration of a program’s
state space. EnFuzz [16] and follow-on framework CollabFuzz [33]
propose an ensemble method of fuzzing using multiple, diverse
fuzzers and sharing an input corpus amongst all fuzzers. We did not
conduct our evaluation using a shared seed pool because sharing
a seed pool could hamper the progress made by these individual
fuzzer variants, as it is possible that a scheduling algorithm could

An Empirical Examination of Fuzzer Mutator Performance

divert a variant’s attention away from mutating on harder-to-cover
branches in favor of progress made elsewhere.

Fuzzer Evaluation: One of the biggest problems facing the
fuzzing community at large is that there currently are no univer-
sally agreed upon, standardized means of comparing the efficacy of
different fuzzer implementations. The first large-scale investigation
into the science of evaluating fuzzers was conducted in 2018 by
Klees et al. [26]. In this work, the authors found problems in experi-
mental evaluations conducted by 32 of the most recent, high-impact
fuzzing papers. The paper reports a failure to do one or more of
the following: establishing a compelling baseline fuzzer to compare
against, establishing a sample of target programs for the purposes
of the fuzzer, establishing a performance metric, establishing the
set of configurations parameters (the seed files, length of the ex-
periment, etc.), and accounting for the inherently stochastic nature
of fuzzing. In an effort to mitigate this, Klees et al. were the first
to suggest best practices for evaluating fuzzers [26], starting with
a need to establish a uniform standard for benchmark programs
and to conduct fuzzing evaluations for a minimum of 24 hours and
with 20 or more runs for statistical significance.

Many published fuzzer evaluations use some combination of
real-world programs, the LAVA-M dataset [18] or the Cyber Grand
Challenge Qualifying Event (CQE) binaries [17]. The LAVA-M and
CQE binaries contain a fixed number of synthetically introduced
vulnerabilities and, therefore, provide some ground truth for eval-
uating fuzzers’ ability to find bugs. However, the danger to using
these datasets is the risk of overfitting — particularly due to the
synthetic bugs. Additionally, the bugs within these datasets do not
necessarily reflect the manifestation of real bugs in real programs.
To rectify this, there have been advances in injecting bugs into pro-
grams that are representative of bugs found in real-world releases.
The Magma [24] framework that we used in our evaluation patches
current versions of benchmark programs with exemplar real-world
vulnerabilities. Another more recent and sophisticated example is
FixReverter [46] — a tool that automatically injects realistic bugs in
a program by conducting both semantic and syntactical analysis
to identify points where vulnerable code can be injected into a
codebase. Using this methodology, the authors were able to create
a benchmark suite of 10 programs with nearly 8000 bugs injected
into them.

As indicated by our study, properly evaluating a fuzzer is expen-
sive and time-consuming. Recent projects such as OSS-Fuzz [13],
Magma [24] and FuzzBench [31] have significantly contributed to
the state-of-the-art in terms of making fuzzer evaluation easier and
more accessible to the open source community at large. OSS-Fuzz
offers “fuzzing evaluation” as a service, with the primary goal of
making fuzzing more accessible to open-source projects and to
continuously fuzz these projects in the hopes of mitigating soft-
ware vulnerabilities. FuzzBench [31] is built on OSS-Fuzz and is a
state-of-the-art platform for evaluating fuzzers on a wide variety of
targets at large scale. It is specifically built for fuzzing researchers to
be able to compare their fuzzer with any number of variety of other
fuzzers on OSS-Fuzz-supported targets. FuzzBench has indeed been
adopted by the community as a state-of-the-art tool for fuzzer eval-
uation, and there have been a multitude of fuzzer evaluation studies
that use FuzzBench [14, 20, 45, 46]. While FuzzBench allows for local

1641

ISSTA °24, September 16-20, 2024, Vienna, Austria

experimentation, to run a full-scale experiment utilizing the frame-
work, a fuzzer must be integrated into the FuzzBench repository,
this makes it not necessarily the best tool for private developers
testing a variety of experimental configurations. Magma [24] at-
tempts to make fuzzer evaluation easier by providing a framework
that evaluates fuzzers based on their ability to find a ground-truth
set of synthetically introduced bugs. Magma’s framework can be
extended and run locally relatively easily, as we showed in this
study. The most related FuzzBench evaluation to our work is the
recent evaluation of AFL by Fioraldi et al. [20]. In this work, the
authors took a more holistic approach to evaluating nine features
of AFL, including power scheduling, scoring, trimming, and others.
The goal of the work was to determine which features of AFL would
be wise to include in all fuzzer improvements moving forward. The
authors aimed to focus on not only traditional metrics of coverage
and bug-finding but also usability and software reliability. Our eval-
uation differs in that it seeks to evaluate design decisions within the
mutation stage of the most widely used fuzzer, AFL++. In doing so,
we recommend general best practices for fuzzer mutation design,
use, and evaluation moving forward.

7 Conclusion

In this experience paper, we present the first large-scale evalua-
tion of individual mutation operators within the havoc stage of the
AFL++ fuzzer, as well as the overall havoc, splicing, and REDQUEEN
mutators. Our over 12 CPU-year evaluation showed that disabling
certain mutators, particularly splicing, built into the AFL++ fuzzing
loop allowed for more unique branches to be covered and unique
bugs to be triggered. We also showed that while the number of
branches between individual havoc mutators is not statistically
significant, and running the mutators in isolation results in statisti-
cally significantly lower coverage when compared to the baseline
AFL++, there does seem to be a benefit to combining them for bug
finding. We presented best practices for developers using and writ-
ing fuzzers and call upon the research community to invest more
time and resources into understanding seemingly simple design
decisions within fuzzers and to conduct research towards improv-
ing the practicality of fuzzer evaluation. We believe our evaluation
is a fundamental first step and is the beginning of a large body
of work towards an understanding of fuzzer mutation strategies,
and how those mutation strategies can be improved or dynamically
modified to improve fuzzer performance, and therefore the quality
of software as a whole.

8 Data Availability

Our artifact, consisting of the container used to run our experiments,
the raw data that was output from the experiments, all source code
of the modified AFL++ used in our evaluation, and our analysis
scripts, is published along with this paper [28].

References
[1] [n.d.]. CVE - CVE-2015-8784 — cve.mitre.org. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2015-8784.
[2] [n.d.]. CVE - CVE-2017-9048 — cve.mitre.org. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2017-9048. [Accessed 11-04-2024].

[3] [n.d.]. CVE - CVE-2018-13785 — cve.mitre.org. https://cve.mitre.org/cgi-bin/
cvename.cgi?’name=CVE-2018-13785.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8784
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8784
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9048
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9048
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-13785
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-13785

ISSTA °24, September 16-20, 2024, Vienna, Austria

[12

[13

[14]

[15]

[16

[17

[18]

[19]

[20]

[26

[27

[28]

[29]

[n.d.]. CVE - CVE-2019-10873 — cve.mitre.org. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2019-10873. [Accessed 11-04-2024].

[n.d.]. CVE - CVE-2020-24369 — cve.mitre.org. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2020-24369. [Accessed 11-04-2024].

[n.d.]. Fixed bug: Negation overflow in getlocal/setlocal lu-
a/lua@a585eae github.com. https://github.com/lua/lua/commit/
a585eae6e7adalca9271607a4f48dfb17868ab7b. [Accessed 11-04-2024].

[n.d.]. NVD - CVE-2020-24370 — nvd.nist.gov. https://nvd.nist.gov/vuln/detail/
CVE-2020-24370. [Accessed 11-04-2024].

[n.d.]. The LLVM Compiler Infrastructure Project — llvm.org. https://llvm.org.
[Accessed 12-04-2024].

2023. Fuzzing Survey. https://fuzzing-survey.org/.

Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and
Thorsten Holz. [n.d.]. REDQUEEN: Fuzzing with Input-to-State Correspondence.
Marcel Bohme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
Based Greybox Fuzzing as Markov Chain (CCS ’16). Association for Computing
Machinery, New York, NY, USA, 1032-1043. https://doi.org/10.1145/2976749.
2978428

Marcel Béhme, Laszl6 Szekeres, and Jonathan Metzman. 2022. On the Reliability
of Coverage-Based Fuzzer Benchmarking (ICSE °22). Association for Computing
Machinery, New York, NY, USA, 1621-1633. https://doi.org/10.1145/3510003.
3510230

Oliver Chang, Jonathan Metzman, Max Moroz, Martin Barbella, and Abhishek
Arya. 2016. OSS-Fuzz: Continuous Fuzzing for Open Source Software. URL:
https://github. com/google/ossfuzz (2016).

Ju Chen, WookHyun Han, Mingjun Yin, Haochen Zeng, Chengyu Song, Byoungy-
oung Lee, Heng Yin, and Insik Shin. 2022. SYMSAN: Time and Space Efficient
Concolic Execution via Dynamic Data-flow Analysis. In 31st USENIX Security
Symposium (USENIX Security 22). USENIX Association, Boston, MA, 2531-2548.
https://www.usenix.org/conference/usenixsecurity22/presentation/chen- ju

P. Chen and H. Chen. 2018. Angora: Efficient Fuzzing by Principled Search. In
2018 IEEE Symposium on Security and Privacy (SP). 711-725.

Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang, Mingzhe Wang, Chijin Zhou, Xun
Jiao, and Zhuo Su. 2019. EnFuzz: Ensemble Fuzzing with Seed Synchronization
among Diverse Fuzzers. In 28th USENIX Security Symposium (USENIX Security
19). USENIX Association, Santa Clara, CA, 1967-1983. https://www.usenix.org/
conference/usenixsecurity19/presentation/chen-yuanliang

DARPA. 2016. DARPA Cyber Grand Challenge Sample Challenges. https://github.
com/CyberGrandChallenge/samples/.

B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robertson, F. Ulrich,
and R. Whelan. 2016. LAVA: Large-Scale Automated Vulnerability Addition. In
2016 IEEE Symposium on Security and Privacy (SP). 110-121. https://doi.org/10.
1109/SP.2016.15

Andrea Fioraldi, Dominik Maier, Heiko Eibfeldt, and Marc Heuse. 2020. AFL++:
Combining incremental steps of fuzzing research. In 14th USENIX Workshop on
Offensive Technologies (WOOT 20).

Andrea Fioraldi, Alessandro Mantovani, Dominik Maier, and Davide Balzarotti.
2023. Dissecting American Fuzzy Lop: A FuzzBench Evaluation. ACM Trans.
Softw. Eng. Methodol. 32, 2, Article 52 (mar 2023), 26 pages. https://doi.org/10.
1145/3580596

Vijay Ganesh, Tim Leek, and Martin Rinard. 2009. Taint-Based Directed Whitebox
Fuzzing. In Proceedings of the 31st International Conference on Software Engineering
(ICSE °09). IEEE Computer Society, USA, 474-484. https://doi.org/10.1109/ICSE.
2009.5070546

Google. 2022. honggfuzz. https://honggfuzz.dev.

Alex Groce, Chaogiang Zhang, Eric Eide, Yang Chen, and John Regehr. 2012.
Swarm Testing (ISSTA 2012). Association for Computing Machinery, New York,
NY, USA, 78-88. https://doi.org/10.1145/2338965.2336763

Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2020. Magma: A Ground-
Truth Fuzzing Benchmark. Proc. ACM Meas. Anal. Comput. Syst. 4, 3, Article 49
(Dec. 2020), 29 pages. https://doi.org/10.1145/3428334

Patrick Jauernig, Domagoj Jakobovic, Stjepan Picek, Emmanuel Stapf, and Ahmad-
Reza Sadeghi. 2023. DARWIN: Survival of the Fittest Fuzzing Mutators. In
Proceedings 2023 Network and Distributed System Security Symposium. Internet
Society. https://doi.org/10.14722/ndss.2023.23159

George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing (CCS ’18). Association for Computing Machinery, New
York, NY, USA, 2123-2138. https://doi.org/10.1145/3243734.3243804

James Kukucka, Luis Pina, Paul Ammann, and Jonathan Bell. 2022. CONFETTI:
Amplifying Concolic Guidance for Fuzzers (ICSE °22). Association for Comput-
ing Machinery, New York, NY, USA, 438-450. https://doi.org/10.1145/3510003.
3510628

James Kukucka, Luis Pina, Paul Ammann, and Jonathan Bell. 2024. Artifact to
accompany "An Empirical Examination of Fuzzer Mutator Performance” (ISSTA
2024 article). https://doi.org/10.5281/zenodo.12655683

LLVM Project. 2019. libFuzzer - a library for coverage-guided fuzz testing. https:
//Mvm.org/docs/LibFuzzer.html.

1642

[30

=
!

[33

[34

@
2

[36

[37

[38

@
0,

[40

(41

[42

=
&

=
ot

S
&

S
&

[47]

James Kukucka, Luis Pina, Paul Ammann, and Jonathan Bell

Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and
Raheem Beyah. 2019. MOPT: Optimized Mutation Scheduling for Fuzzers. In 28th
USENIX Security Symposium (USENIX Security 19). USENIX Association, Santa
Clara, CA, 1949-1966. https://www.usenix.org/conference/usenixsecurity19/
presentation/lyu

Jonathan Metzman, Laszl6 Szekeres, Laurent Maurice Romain Simon, Read Trev-
elin Sprabery, and Abhishek Arya. 2021. FuzzBench: An Open Fuzzer Bench-
marking Platform and Service. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE 2021). Association for Computing Machinery,
New York, NY, USA, 1393-1403. https://doi.org/10.1145/3468264.3473932
Maria-Irina Nicolae, Max Eisele, and Andreas Zeller. 2023. Revisiting Neural
Program Smoothing for Fuzzing (ESEC/FSE 2023). Association for Computing Ma-
chinery, New York, NY, USA, 133-145. https://doi.org/10.1145/3611643.3616308
Sebastian Osterlund, Elia Geretto, Andrea Jemmett, Emre Giiler, Philipp Gérz,
Thorsten Holz, Cristiano Giuffrida, and Herbert Bos. 2021. CollabFuzz: A Frame-
work for Collaborative Fuzzing (EuroSec °21). Association for Computing Machin-
ery, New York, NY, USA, 1-7. https://doi.org/10.1145/3447852.3458720

Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves
Le Traon. 2019. Semantic fuzzing with zest. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis. 329-340.

Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida, and
Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing. In NDSS.
https://www.vusec.net/download/?t=papers/vuzzer_ndss17.pdf

Moritz Schloegel, Nils Bars, Nico Schiller, Lukas Bernhard, Tobias Scharnowski,
Addison Crump, Arash Ale Ebrahim, Nicolai Bissantz, Marius Muench, and
Thorsten Holz. 2024. SoK: Prudent Evaluation Practices for Fuzzing. arXiv
preprint arXiv:2405.10220 (2024).

Koushik Sen and Gul Agha. 2006. CUTE and jCUTE: Concolic Unit Testing and
Explicit Path Model-Checking Tools. In CAV, Thomas Ball and Robert B. Jones
(Eds.). 419-423.

Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vi-
gna. 2016. Driller: Augmenting Fuzzing Through Selective Symbolic Exe-
cution. In 23rd Annual Network and Distributed System Security Symposium,
NDSS 2016, San Diego, California, USA, February 21-24, 2016. The Internet Soci-
ety. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/
driller-augmenting-fuzzing- through-selective- symbolic-execution.pdf

Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2019. Superion: Grammar-
Aware Greybox Fuzzing (ICSE °19). IEEE Press, 724-735. https://doi.org/10.1109/
ICSE.2019.00081

Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. 2011. Checksum-Aware Fuzzing
Combined with Dynamic Taint Analysis and Symbolic Execution. ACM Trans.
Inf. Syst. Secur. 14, 2, Article Article 15 (Sept. 2011), 28 pages. https://doi.org/10.
1145/2019599.2019600

Mingyuan Wu, Ling Jiang, Jiahong Xiang, Yanwei Huang, Heming Cui, Lingming
Zhang, and Yuqun Zhang. 2022. One Fuzzing Strategy to Rule Them All (ICSE
’22). Association for Computing Machinery, New York, NY, USA, 1634-1645.
https://doi.org/10.1145/3510003.3510174

Andy B Yoo, Morris A Jette, and Mark Grondona. 2003. Slurm: Simple linux utility
for resource management. In Job Scheduling Strategies for Parallel Processing: 9th
International Workshop, JSSPP 2003, Seattle, WA, USA, June 24, 2003. Revised Paper
9. Springer, 44-60.

Michat Zalewski. 2014. Binary fuzzing strategies: What works, what
doesn’t. https://lcamtuf.blogspot.com/2014/08/binary-fuzzing- strategies-what-
works.html

Michal Zalewski. 2019. American Fuzzy Lop. http://lcamtuf.coredump.cx/afl/
technical_details.txt.

Zenong Zhang, George Klees, Eric Wang, Michael Hicks, and Shiyi Wei. 2023.
Fuzzing Configurations of Program Options. ACM Trans. Softw. Eng. Methodol.
32, 2, Article 53 (mar 2023), 21 pages. https://doi.org/10.1145/3580597

Zenong Zhang, Zach Patterson, Michael Hicks, and Shiyi Wei. 2022. FIXRE-
VERTER: A Realistic Bug Injection Methodology for Benchmarking Fuzz Testing.
In 31st USENIX Security Symposium (USENIX Security 22). USENIX Association,
Boston, MA, 3699-3715. https://www.usenix.org/conference/usenixsecurity22/
presentation/zhang-zenong

Lei Zhao, Yue Duan, Heng Yin, and Jifeng Xuan. 2019. Send Hard-
est Problems My Way: Probabilistic Path Prioritization for Hybrid
Fuzzing. In 26th Annual Network and Distributed System Security Sym-
posium, NDSS 2019, San Diego, California, USA, February 24-27, 2019.
https://www.ndss-symposium.org/ndss-paper/send-hardest-problems-
my-way-probabilistic- path- prioritization-for-hybrid-fuzzing/

Received 2024-04-12; accepted 2024-07-03

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-10873
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-10873
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-24369
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-24369
https://github.com/lua/lua/commit/a585eae6e7ada1ca9271607a4f48dfb17868ab7b
https://github.com/lua/lua/commit/a585eae6e7ada1ca9271607a4f48dfb17868ab7b
https://nvd.nist.gov/vuln/detail/CVE-2020-24370
https://nvd.nist.gov/vuln/detail/CVE-2020-24370
https://llvm.org
https://fuzzing-survey.org/
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/3510003.3510230
https://doi.org/10.1145/3510003.3510230
https://www.usenix.org/conference/usenixsecurity22/presentation/chen-ju
https://www.usenix.org/conference/usenixsecurity19/presentation/chen-yuanliang
https://www.usenix.org/conference/usenixsecurity19/presentation/chen-yuanliang
https://github.com/CyberGrandChallenge/samples/
https://github.com/CyberGrandChallenge/samples/
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1145/3580596
https://doi.org/10.1145/3580596
https://doi.org/10.1109/ICSE.2009.5070546
https://doi.org/10.1109/ICSE.2009.5070546
https://honggfuzz.dev
https://doi.org/10.1145/2338965.2336763
https://doi.org/10.1145/3428334
https://doi.org/10.14722/ndss.2023.23159
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3510003.3510628
https://doi.org/10.1145/3510003.3510628
https://doi.org/10.5281/zenodo.12655683
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://doi.org/10.1145/3468264.3473932
https://doi.org/10.1145/3611643.3616308
https://doi.org/10.1145/3447852.3458720
https://www.vusec.net/download/?t=papers/vuzzer_ndss17.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/driller-augmenting-fuzzing-through-selective-symbolic-execution.pdf
https://doi.org/10.1109/ICSE.2019.00081
https://doi.org/10.1109/ICSE.2019.00081
https://doi.org/10.1145/2019599.2019600
https://doi.org/10.1145/2019599.2019600
https://doi.org/10.1145/3510003.3510174
https://lcamtuf.blogspot.com/2014/08/binary-fuzzing-strategies-what-works.html
https://lcamtuf.blogspot.com/2014/08/binary-fuzzing-strategies-what-works.html
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://doi.org/10.1145/3580597
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-zenong
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-zenong
https://www.ndss-symposium.org/ndss-paper/send-hardest-problems-my-way-probabilistic-path-prioritization-for-hybrid-fuzzing/
https://www.ndss-symposium.org/ndss-paper/send-hardest-problems-my-way-probabilistic-path-prioritization-for-hybrid-fuzzing/

	Abstract
	1 Introduction
	2 Background
	2.1 Havoc
	2.2 RedQueen
	2.3 Splicing

	3 Implementation
	4 Evaluation
	4.1 Methodology
	4.2 RQ1: Is there a significant difference in coverage between various AFL++ configuration combinations of normal Havoc, RedQueen, and splicing?
	4.3 RQ2: Is there a statistically significant difference in the bugs reached and triggered by various AFL++ configuration combinations of normal Havoc, RedQueen, and splicing?
	4.4 RQ3: Is there a statistically significant difference in coverage between individual havoc mutators, both amongst themselves and compared to baseline normal havoc? Are there bugs that only individual havoc mutators can find?

	5 Discussion
	5.1 Implications
	5.2 Threats to Validity

	6 Related Work
	7 Conclusion
	8 Data Availability
	References

