
Modern taint tracking and concolic execution techniques can
augment fuzzer coverage, but don’t capture relationships through

control flow

Exception in thread "Thread-2" java.lang.StackOverflowError
at java.lang.StringBuilder.getChars(StringBuilder.java:76)
at org.apache.logging.log4j.core.lookup.StrSubstitutor.getChars(StrSubstitutor.java:1401)
at org.apache.logging.log4j.core.lookup.StrSubstitutor.substitute(StrSubstitutor.java:939)
at org.apache.logging.log4j.core.lookup.StrSubstitutor.substitute(StrSubstitutor.java:912)
at org.apache.logging.log4j.core.lookup.StrSubstitutor.substitute(StrSubstitutor.java:978)
at org.apache.logging.log4j.core.lookup.StrSubstitutor.substitute(StrSubstitutor.java:1042)
...

CONFETTI: Amplifying Concolic Guidance For Fuzzers
James Kukucka, Luís Pina, Paul Amman, Jonathan Bell

Problem: Conventional unit testing is not enough to find latent bugs in program application logic

CONFETTI uses a non-blocking architecture to maximize
performance

protected boolean substitute(final LogEvent event, final StringBuilder buf,
final int offset, final int length) {
 return substitute(event, buf, offset, length, null) > 0;
}

Developers often introduce latent bugs within application logic

This code snippet comes from CVE-2021-45105, one of the high-profile log4j
vulnerabilities discovered in 2021. The function shown is subject to a stack
overflow from a well-crafted input. It behooves developers to utilize means of
detecting these syntactically valid, yet unexpected inputs to programs, to catch
these latent bugs.

Parametric fuzzers can help developers to catch latent bugs

Parametric fuzzers are the current state of the art when it comes to greybox
fuzzing for bugs in application logic. By mutating parametric inputs, these
fuzzers’ mutations are abstracted at the input generation level, allowing inputs
to pass syntactic parsing and reveal bugs within the application logic.
Parametric fuzzing is illustrated in the orange path, while traditional greybox
fuzzing such as AFL is illustrated in the blue path.

System Under Test
Semantic Logic

Syntactic Parser
Mutator

Parametric
Generator

Guidance

X ✔

Coverage

Biases

<xml>
 <name>value</name>
</xml>

name=value

<xml>
</xml> 0001Seeds

Concrete
input:

Parametric
input:

Concrete input:
<xml><^xml>

0011

Our Solution: CONFETTI combines parametric fuzzing, targeted hinting, and novel global hinting to achieve
higher coverage than a baseline parametric fuzzer and targeted hinting alone.

Global hinting is a novel strategy that helps further augment
fuzzing coverage despite the loss of taint tags

In this example, a taint tracking tool will not report any relationship
between the input and the branch on line 4 because v1 is control-
dependent on s1, but not data-dependent.

CONFETTI
Coordinator

Whitebox Analysis
(Knarr) Greybox Fuzzer

SMT Solver

2 Interesting input3 Analyze new input

4 Constraints + taint flows

5 Solve negated
constraints

6 New
inputs

7 New input(s) & hints for
original input

1 Generate and
Execute Inputs

 The CONFETTI coordinator queues inputs for whitebox analysis and delivers
targeted and global hints to the greybox fuzzer, all without inhibiting the
performance of the greybox fuzzer.

By applying targeted hints pseudorandomly anywhere in the input, global
hinting enables coverage of line 5.

1 public void magic(String s1, String s2) {
2 if (s1.equals("abc") && s2.equals("def"))
3 throw new IllegalStateException(); // Bug
4 } }

In this example, taint tracking and concolic execution would succeed in
covering line 3 because there is a data flow relationship between s1, s2 and
the predicate on line 2.

1 public void magic(String s1, String s2) {
2 boolean v1 = s1.equals("abc");
3 boolean v2 = s2.equals(s1.concat("def"));
4 if (v1 && v2)
5 throw new IllegalStateException(); // Bug
6 } }

Taint
Tracking

“abcdef”

Global Hints

Binary Scraping

Static
Dictionary

“abc”
“def”

872

11,458

CONFETTI

857

1421

3,744
5,858

1361

821

JQF-Zest

10,545
Apache BCEL

871

Apache Maven

Total Branches

6,220
23,361

10,640

3,757Mozilla Rhino

CONFETTI
(Targeted Hints Only)

25,035

Google Closure
853

Program

49,602
1423

Apache Ant 859

3,534

CONFETTI is able to find more bugs with a higher rate of
repeatability

CONFETTI achieves higher branch coverage across most
benchmarks

s1 = generateString(r); // picks randomly from static
dictionary to yield “abc”
s2 = generateString(r); // picks randomly from global
hints to yield “abcdef”

This heat map shows the rate of repeatability for each bug that JQF-Zest,
CONFETTI with only targeted hinting and CONFETTI with global hinting were able
to find. Cells range in color from red to green, with green indicating a
repeatability rate approaching 100%. Where applicable, we also indicated bugs
that were reported, acknowledged, or fixed by developers.

Fork CONFETTI on Github

https://github.com/neu-se/confetti

CONFETTI’s continuous integration workflow
allows for easier evaluation and extensibility

Our GitHub repository has a continuous integration workflow
to run rapid performance evaluations of pull requests. We hope
that our open-source release of CONFETTI and its continuous
workflow will help to support the growing community of
practitioners and researchers engaged in fuzzing JVM-based
software. Please feel free to fork CONFETTI on GitHub and try it
out in your fuzzing workflow. You can access our repository by
scanning the QR code!

1 public void magic(String s1, String s2) {
2 boolean v1 = s1.equals("abc");
3 boolean v2 = s2.equals(s1.concat("def"));
4 if (v1 && v2)
5 throw new IllegalStateException(); // Bug
6 } }

Issue Status JQF-Zest
CONFETTI

(Targeted Hints Only) CONFETTI
Ant 1 100 100 100
BCEL 1 100 0 0
BCEL 2 100 100 0
BCEL 3 Reported 0 0 40
BCEL 4 0 0 80
BCEL 5 Reported 0 5 100
BCEL 6 Reported 0 20 100
Closure 1 100 100 100
Closure 2 90 85 5
Closure 3 80 70 45
Closure 4 Acknowledged 0 45 95
Closure 5 Fixed 0 15 90
Closure 6 0 0 5
Closure 7 Acknowledged 0 20 100
Closure 8 Fixed 0 0 100
Closure 9 Acknowledged 15 15 20
Closure 10 0 5 100
Closure 11 Fixed 0 0 100
Closure 12 Fixed 0 0 35
Closure 13 0 0 20
Closure 14 0 0 5
Closure 15 0 0 5
Rhino 1 100 100 100
Rhino 2 100 100 100
Rhino 3 100 100 100
Rhino 4 100 100 100

