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Abstract Binary rewriting consists in disassembling a

program to modify its instructions. However, existing

solutions suffer from shortcomings in terms of sound-

ness and performance. We present SaBRe, a load-time

system for selective binary rewriting. SaBRe rewrites

specific constructs—particularly system calls and func-

tions—when the program is loaded into memory, and

intercepts them using plugins through a simple API.

We also discuss the theoretical underpinnings of disas-

sembling and rewriting. We developed two backends—

for x86 64 and RISC-V—which were used to implement

three plugins: a fast system call tracer, a multi-version

executor, and a fault injector. Our evaluation shows

that SaBRe imposes little overhead, typically below 3%.

Keywords selective binary rewriting · x86 64 ·
RISC-V · system call tracing · multi-version execution ·
fault injection

1 Introduction

Binary rewriting is widely used to implement security

and reliability techniques, such as software fault isola-

tion [68], sandboxing [67], multi-version execution [26],

program optimization [3], and bounds checking [49].

The goal of binary rewriting is to add, delete and

replace instructions in binary code. There are two main

types of binary rewriting techniques: static and dy-

namic. In static binary rewriting, the binary file is rewrit-

ten on disk before the program executes, while in dy-
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namic binary rewriting it is rewritten in memory as the

program executes. With static approaches, the rewrit-

ing process does not incur any overhead during execu-

tion as it is performed before the program starts run-

ning. However, static binary rewriting is hard to get

right: correctly identifying all the code in the program

is ultimately reducible to the halting problem [24] in

the presence of variable-length instructions and indi-

rect jumps.

By contrast, dynamic binary rewriting modifies the

code in memory, during program execution. This is typ-

ically accomplished by translating one basic block at

a time and caching the results, with branch instruc-

tions modified to point to already translated code. Since

translation is done at runtime, when the instructions

are issued and the targets of indirect branches are al-

ready resolved, dynamic binary rewriting is not affected

by the aforementioned issues for static binary rewrit-

ing. However, this style of translation is heavyweight

and incurs a large runtime overhead.

In this paper, we present SaBRe, a system that

implements a novel design point for binary rewriting.

Unlike prior techniques, SaBRe operates at load-time,

after the program is loaded into memory, but before

it starts execution. Like static binary rewriting tech-

niques, SaBRe rewrites the code in-place. However,

SaBRe’s translation is done in memory, similarly to

dynamic binary rewriting. This combination enables

SaBRe to efficiently and safely rewrite all the code

mapped into a process, including dynamically-loaded

libraries, while increasing the program start time usu-

ally by less than 70ms. We note here that some tech-

niques based on load-time binary rewriting exist—such

as Xifer [13] in the context of software diversity—but

they rely on specific features of the operating system’s

loader (see §6).
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SaBRe is a selective rewriter that intercepts instruc-

tions of interest (e.g. system calls and function pro-

logues) by relocating them and rewriting their original

location with byte-long invalid instructions. SaBRe in-

stalls an invalid-instruction handler that identifies which

instruction was intercepted by the value of the program

counter at the invalid instruction. Using this scheme,

SaBRe improves the state of the art over static tech-

niques as it can retain the original semantics of the bi-

nary even in the presence of indirect jumps only known

at runtime and jumps to the middle of existing instruc-

tions.

The goal of SaBRe is to provide a framework for

implementing plugins for improving software reliability,

such as tracers and fault injectors. Therefore, SaBRe is

designed to take advantage of code generated by well-

behaved compilers such as gcc and LLVM, even at high

optimisation levels. Obfuscated and hand-crafted code,

such as that found in malware, is out of scope.

A key optimization in SaBRe is to replace the relo-

cated instructions with a direct jump to their handler

code, based on the observation that code generated by

modern compilers follows well-known patterns for cer-

tain types of constructs such as system calls and func-

tion prologues. This reduces SaBRe’s average runtime

overhead from 13%-62% to only 0.3%-3% on our bench-

marks.

We implemented two rewriting backends based on

this design: one for x86 64 and one for RISC-V. Both

rewriters provide the same flexible API, which we used

to implement three different plugins: a fast system call

tracer, a multi-version execution system, and a fault

injector.

In summary, our main contributions are:

1. A new design point for selective binary rewriting

which translates code in memory in-place at load

time, before the program starts execution.

2. An implementation of this approach for two archi-

tectures, x86 64 and RISC-V. We make our imple-

mentation available as open source.

3. The implementation of a system call tracer based

on SaBRe, which is complete (does not miss vDSO

system calls) and faster (2x slowdown vs 28x aver-

age slowdown) when compared to the state of the

art.

4. The implementation of a novel system-call fault in-

jector, that finds bugs in existing libraries that mis-

handle error conditions from system calls (e.g. glibc

mishandling an mmap that returns NULL).

5. A comprehensive evaluation using three plugins: the

fast system call tracer and fault injector described

above, and the reimplementation of a multi-version

execution system.

At a high level, SaBRe starts by disassembling the

binary into its constituent instructions and then selec-

tively rewrites the desired instructions in memory, at

load time. We first discuss the rewriting stage in §2
and then the disassembly stage in §3. We next present

the implementation of SaBRe in §4, and extensively

evaluate it in §5.

2 Rewriting

This section assumes that all instructions are accurately

disassembled; we discuss this process in detail in §3.
We start with a discussion of existing binary rewriting

approaches (§2.1), present the standard interception in

SaBRe via invalid instructions (§2.2) and then discuss

a key optimization based on trampolines (§2.3).

2.1 Static vs. dynamic rewriting

Binary rewriting schemes are traditionally categorised

as either static or dynamic [63]. The latter is performed

at runtime and relies on actual execution of the pro-

gram. It incurs a high overhead in both space and time,

and therefore generally cannot be used in production

(see also our experiments in §5.2). Moreover, it is use-

ful for heavyweight instrumentation purposes but not

particularly suited to the type of plugins based on se-

lective rewriting.

On the other hand, static binary rewriting can be

performed off-line on binary files, which makes it

amenable to deployment. Nonetheless, statically rewrit-

ing a whole program is hard due to dynamic linking
and position-independent code—which is now the de-

fault for most modern compiler targets—and the dif-

ficulty of creating a valid modified executable—which

may require changing a large number of offsets. There-

fore, we propose to statically rewrite programs at load

time. This has several benefits:

1. Low overhead that only occurs on program startup—

which makes it suitable for production.

2. Rewriting done after the program is loaded in mem-

ory, when effective addresses are known and dy-

namic linking and position-independent code are not

of concern anymore.

3. Rewriting done in-memory, so there is no need to

create a valid executable on disk.

4. Shared libraries can be rewritten transparently and

selectively for each execution.

The state of the art in static rewriters can broadly

be classified based upon the underlying technique used:

insertion, trampoline or lifting [29].
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Insertion [29]. The most straightforward rewriting

technique is to insert instructions directly into the main

execution stream. Unfortunately, this requires “stretch-

ing” the whole binary to accommodate added instruc-

tions. In other words, references have to be recomputed

and program headers updated to reflect the shifted lo-

cations. This may be done extensively at link time to

leverage relocation information and mapping

symbols [57,59,53,14], or post-link-time [15]. Recent

additional work [16,64] shows that in binaries that con-

sist only of position independent code, this approach is

also feasible.

Trampolines [27,32]. This approach inserts an

unconditional jump to an out-of-line piece of code called

a trampoline. Its role is to set up the environment in a

way that enables a dedicated function, thereafter named

handler, to be called transparently. However, to reach

the trampoline, some control-transfer code has to be

inserted at the target snippet’s original location: a de-

tour. Inserting a detour at an arbitrary location can be

challenging, as we discuss in §2.3.

Lifting [46]. This approach translates binary code

into a higher-level representation, rewrite it, and then

reassemble it. The main advantage of binary lifting is

to expose high-level constructs like function arguments

and return values as well as symbols rather than mem-

ory locations. Unfortunately, these representations are

usually tied to a specific compiler (e.g. LLVM bitcode),

and translating and then recompiling code is a costly

operation.

2.2 Standard interception in SaBRe

In general, rewriting includes three possible operations:

adding, removing and replacing instructions. We dis-

cuss all these operations in terms of replacing an orig-

inal instructions snippet O with another snippet R,

where both O or R could have size 0. Let A(o) and S(o)

be functions that map an object o into its start address

and size, respectively. When S(O) = 0, A(O) indicates

the offset in the code where R should be added. When

S(R) = 0, it means that O should be removed.

We have three main cases:

1. S(O) = S(R): simply overwrite O with R

2. S(O) > S(R): insert R and pad the remaining space

with nops

3. S(O) < S(R): insert an illegal instruction and catch

the SIGILL signal

In the last case, R cannot be inserted in place be-

cause it is larger than O. In SaBRe, the standard way

to deal with this situation is to replace O with an il-

legal instruction (e.g. UD0 for x86 64) and pad the re-

maining space with nops. The exact illegal instruction

picked is arbitrary but will be used at runtime to deter-

mine which R to insert. Then SaBRe installs a handler

to catch the SIGILL signal triggered by the CPU at-

tempting to decode this illegal instruction. This signal

handler first checks whether the cause of the SIGILL is

a legitimate illegal instruction, in which case it simply

redirects execution to the default handler. Otherwise,

the signal handler simply executes the R corresponding

to the illegal instruction inserted, before returning to

normal execution. In general, since there can be only

one SIGILL handler per process and the number of bi-

nary sequences guaranteed by an ISA to encode illegal

instructions1is limited, this approach does not scale.

However, as SaBRe is a selective rewriter, it is only

concerned with a limited number of instruction types;

furthermore, the optimisation presented next removes

most of these illegal instructions. Besides, in case this

scheme had to be generic, the solution would be to as-

sociate each R not with a specific illegal instruction but

rather with the location to be rewritten, i.e. the value

of the program counter that raised the signal.

2.3 Trampoline-based optimisation

Interception via illegal instructions is expensive, as it

involves a context switch to the kernel and back. A key

optimisation in SaBRe is to replace as many illegal in-

structions as possible with direct jumps to the handling

code. The optimization takes advantage of the types of

instructions SaBRe is primarily designed to intercept,

particularly system calls, functions and vDSO calls, for

which compilers generate patterns that SaBRe can take

advantage of.

The optimization replaces illegal instructions with

detours via trampolines, which we briefly described in

§2.1. The main challenge is to find space in the main

instruction stream for the unconditional jump to the

trampoline. In a CISC context (e.g. x86 64), a single

instruction suffices to encode the jump. However, with

RISC architectures (e.g. RISC-V), the restricted encod-

ing space usually requires at least two instructions: one

to load the target address into a register, plus one to

actually perform the jump. Hence we will use the term

jump snippet from now on.

When a detour is required, depending on the relative

sizes of the original snippet O and the jump snippet J ,

some surrounding instructions may need to be moved

to the trampoline. Thus the following two cases emerge:

1 Excluding encodings reserved for future use or undefined.



4 Arras et al.

1. S(O) ≥ S(J): insert J and (possibly) pad the re-

maining space with nops

2. S(O) < S(J): relocate as many neighbouring in-

structions as necessary to accommodate J

The trampoline then comprises up to six parts:

1. Preamble (optional): code from O that is to execute

before the handler and had to be relocated

2. Pre-processing : ABI-dependent code to ensure trans-

parency

3. Call to the handler

4. Post-processing : ABI-dependent code to restore the

original state

5. Postamble (optional): code from O that is to execute

after the handler and had to be relocated

6. Jump back to the main instruction stream

On Linux x86 64 for instance, the pre-processing

consists in adjusting the stack pointer in order to pre-

serve the red zone and aligning it on a 16-byte bound-

ary. The red zone is a 128-byte memory area located

below the stack pointer, i.e. it is contiguous to the top

of the stack without being part of it [40, p.18-19]. It

is an optimisation mandated by the ABI to save stack-

adjustment instructions since it can be used as a scratch

space for temporary data. Regular function calls may

clobber the red zone but system calls preserve it. Like-

wise, the alignment is required by the ABI, whenever

a function is called, as an optimisation to enable com-

pilers to emit vector instructions. Another important

aspect is register preservation: SaBRe stores them on

the stack just before calling the handler (see §4.3).
Not all instructions can be safely relocated. If any

such instructions are encountered, SaBRe does not per-

form the trampoline-based optimization and falls back

to the standard interception scheme, which guarantees

the soundness of the approach. In particular, there are

three main classes of instructions that pose challenges:

Instructions with side effects. In most ISAs,

certain instructions exhibit some kind of dependency.

For instance, condition codes set by an earlier instruc-

tion may be used to determine whether a later condi-

tional branch should be taken. Interposing a snippet in-

between may therefore cause the original condition code

to be overwritten which might in turn result in erro-

neous branching. In x86 64, condition codes are stored

in a special status register called RFLAGS; they can

be pushed onto and popped from the stack via dedi-

cated instructions [28, p.79-82]. In ARM’s compressed

instruction set (Thumb), there is no encoding space for

per-instruction condition codes. Instead Thumb pro-

vides the if-then (IT) instruction, which allows to

specify a condition that applies to the next four instruc-
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Fig. 1: Static instruction mix in glibc 2.28.

Table 1: Instruction white list for x86 64.

ADD OR AND SUB XOR CMP
LEA NOP SHL SHR NOT NEG
MUL DIV TEST XCHG MOV

tions [2]. Thus relocating part of an IT block would re-

sult in the condition being applied to the wrong instruc-

tions. In addition, some instructions cannot be inserted

into an IT block.

In general, whatever the ISA, most of the code only

uses a handful of different operations. To illustrate, we

carried out a frequency measurement of x86 64 instruc-

tions in the glibc library. The results are plotted in

Figure 1. The ten most frequent instructions represent

85% of the mix. As few as twenty instructions cover

almost 97% of the code.

Therefore, we maintain a white list of instructions

known to be safely-relocatable, which has several ad-

vantages. First, even though there will be a lot of false

negatives, these should only represent a tiny fraction

of the whole instruction mix and thus be very rare.

Second, this approach allows us to be conservative by

leaving out instructions whose safety is not clear. This

eliminates false positives, i.e. potentially unsafe instruc-

tions will never be relocated. Third, it is much easier to

implement a short white list rather than a long black

list.

Drawing on the glibc instruction mix, Table 1

presents the white list for x86 64. This list covers 73%

of the glibc code and, in our experience, suffices to

relocate all instructions around system calls, function

and vDSO prologues.

Jump targets. Control transfers are of two types:

direct or indirect. The latter is the least frequent: 20%

in SPEC JVM98 and 9% in SPEC INT95 C [34] Di-

rect control flow changes have the destination address

statically encoded into the instruction, usually as a PC-

relative displacement. In SaBRe, all direct jump des-

tinations are recorded during disassembling and then

checked against whenever a snippet is considered for

relocation at rewriting time. However, there are situa-
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tions (e.g. higher-order functions and virtual methods)

where the actual target is not known at compile time.

In this case, a level of indirection is required: instead of

directly specifying the destination, the instruction has

a register operand. The designated register holds the

target address computed at runtime, which depends on

the program’s inputs. As a result, statically deriving

the destination of indirect control transfers is reducible

to the halting problem [24]. Similarly, it is not possible

to determine whether an arbitrary memory location is

the target of an indirect jump.

This poses an interesting theoretical challenge to our

rewriting scheme as some relocated instructions may

become unreachable. For instance, let us suppose that

we relocate a snippet S comprising three instructions

I1..3, and replace them with a jump. If I2 was the target

of a control transfer, the relocation would make it un-

reachable. Instead, control would land in the middle of

the jump instruction which would obviously result in an

incorrect execution. However, in the context of system

calls, functions and vDSO, we can make the following

observations. First, system calls have well-defined pro-

logue and epilogue: the former loads arguments accord-

ing to the ABI-specific calling convention, while the lat-

ter tests the return value and stores it either as a result

or an error code. Second, named functions and vDSO

are detoured at the prologue rather than at call site. In

both cases, we can rely on the fact that a control trans-

fer does not end up in the middle of these well-defined

sequences.

PC-relative addresses. To facilitate shared-library

loading and address-space layout randomisation (ASLR),

most ISAs support PC-relative addressing. As its name

stands, it is a dedicated memory addressing mode that

allows to designate a location as an offset from the cur-

rent PC value. Obviously, if a PC-relative instruction is

relocated to a trampoline, the displacement will become

invalid.

For system calls, due to their standard prologue and

epilogue, we have not encountered such instructions.

However, since function detouring offers less flexibility

in the choice of instructions to relocate, we enhanced

SaBRe to handle PC-relative addressing. The new dis-

placement is easily obtained, as follows. Let D and L

denote the displacement and the instruction location

respectively. Then the new displacement is Dnew =

Dold − (Lnew − Lold).

3 Disassembly

The goal of the disassembling stage is to recover the

program code from the bytes in the binary file. This

is a challenging task, as the disassembler is not aware

of the underlying semantics of the bytes read from the

binary. See Appendix A for more details.

In the context of load-time binary rewriting, we

need to statically disassemble the code. There are two

main algorithms available:

1. Linear sweep. The simplest solution is to start

from the first instruction and then sweep through the

code until the end. The main advantage is obviously

the ease of implementation and the low overhead.

However, linear sweep suffers from a notable short-

coming: it does not attempt to make any distinction

between actual code and possibly embedded data.

Furthermore, it is oblivious to most kinds of instruc-

tion overlapping. In addition, the algorithm must be

pointed to the start of a legitimate instruction, which

is non-trivial for variable-length ISAs. Nonetheless,

traditional linear sweep can be improved to help

code discovery by leveraging relocation

information [52] or pattern matching of well-known

constructs.

2. Recursive traversal. Another option is to scan the

code recursively by analysing and following its con-

trol flow. This translates into much more complex

heuristics compared to linear sweep but enables skip-

ping mixed-in data and exploring possibly hidden ex-

ecution paths. Nevertheless, recursive traversal has

its own shortcomings, the main one being its inabil-

ity to reliably handle indirect control transfers [31].

In fact, indirect jumps and function calls are hard

to analyse statically because the effective destina-

tion addresses are computed at runtime. The usual

workaround is to use speculative disassembly, i.e. to

sweep through unreachable areas of executable seg-

ments in case they might be indirectly targeted [18].

For load-time disassembly, the two criteria for ade-

quate disassembly are coverage and performance. Lin-

ear sweep wins in terms of performance because it only

requires a single decoding pass. In terms of coverage,

even though code discovery is theoretically difficult,

previous work has shown that well-behaved x86 64 com-

pilers never mix code and data [1]. More importantly,

the same work has highlighted that only linear sweep

consistently achieves 100% coverage.

We next discuss the sufficient conditions for accu-

rate disassembly and their feasibility in practice.

Proposition 1 Sufficient conditions for adequate cov-

erage:

1. Within a segment, instructions are tessellated, i.e.

there is neither gap nor overlap between them.

2. The start address and size of executable segments

are known.
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Proposition 2 Sufficient conditions for accurate dis-

assembly:

1. adequate coverage

2. code is immutable

The proofs for these propositions are included in

the appendix. We next discuss the feasibility of each

condition.

Tessellation. Without this assumption, it is im-

possible to rule out over-coverage; and under-coverage

can only be avoided at the price of disassembling every

single offset [4]. This precludes linear sweep on code

that relies on techniques like instruction overlapping

and data interleaving. However, prior work has shown

that gcc and clang produce tessellated code by default

for x86 64 [1]. As a matter of fact, they never insert

data into executable segments nor do they emit over-

lapping instructions precluding hand-written assembly

(e.g. glibc). Even jump tables are stored with all other

read-only data in a separate section. Indeed, the Exe-

cutable and Linkable Format (ELF)2 specification has

different sections for code (.text) and data (.bss, .data

and .rodata).3 Thus, in x86 64 and

RISC-V, jump tables are placed in the .rodata section.

However, a notable exception is ARM, with two con-

structs that break the tessellation assumption: literal

pools of constants embedded in the text segment and in-

function jump tables. Thus, supporting ARM in SaBRe

would be possible at the price of some additional con-

straints on the disassembler, for instance reading map-

ping symbols4 or relocation information [52]—which is

expensive and not fail-safe since they can be stripped—

or listing and analysing instructions that may precede

such constructs (e.g. LDRLS).

Start and size of code segment. In practice,

the locations and sizes of all segments are required by

the operating system’s loader to map them into mem-

ory. This information is therefore provided as metadata

in the final compiled and linked binary, whatever the

executable file format. Besides, the executability of a

segment is always decidable. Most modern CPUs sup-

port an NX bit in their page table to mark entries that

hold non-executable data—by default, everything is ex-

ecutable. The operating system sets this bit, if neces-

sary, when the memory page is mapped into the process

2 ELF is the default file format for executable and object
files on UNIX derivatives.
3 Mach-O and PECOFF have similar sections.
4 The ARM ELF specification requires that mapping sym-

bols should be emitted to identify inline transitions between
code and data, notably at literal pool and jump table bound-
aries.

space. This is also reflected in the executable file for-

mat. For instance in ELF, program headers list code

segments with their start address and size, and with

flag X (eXecutable).5 Given tessellation, disassembling

all X-flagged segments excludes under-coverage.

Immutability. Most applications do not modify

their code during execution, and the operating system

typically restricts write permissions on executable

pages—a widespread scheme commonly known as write

XOR execute. However, one legitimate instance of self-

modifying code is just-in-time (JIT) compilation, which

SaBRe does not support.

4 Implementation

In this section, we present the architecture of SaBRe

and its practical usage.

SaBRe is built using a modular architecture that

maximises flexibility, as illustrated by Figure 2. The

backbone of SaBRe comprises the loader and the rewriter.

In addition, SaBRe requires two modules, a backend

and a plugin. The backend gathers all the ISA-specific

code: the disassembler and the binary-code emitter.

The plugin implements the exact purpose of the rewrit-

ing, e.g. tracing system calls, injecting faults, etc. Note

that plugins are loosely coupled with the backbone by

a well-defined API, which enables third-party plugins

to be added to SaBRe easily.

The current implementation of SaBRe targets the

Linux operating system. The backbone comprises 2108

LOC in C; the x86 64 backend has 1333 LOC split be-

tween C (963) and ASM (410). The API and some op-

tional support code (data structures to speed up the

traversal of scanned libraries by the rewriter) account

for an additional 2016 LOC in C. The resulting x86 64

binary is only 47KiB split between 33KiB of code and

14KiB of data. The binary for RISC-V is smaller: 26KiB

of code and 14KiB of data, making up a total of 40KiB.

Therefore, SaBRe can be used in small embedded sys-

tems with stringent memory constraints.

SaBRe is available as open source at:

https://github.com/srg-imperial/sabre.

4.1 Backbone

SaBRe’s loader is a dynamically linked executable whose

only dependency is the C runtime library (libc). It pro-

vides the entry point to SaBRe’s execution and only

runs at load time. Upon startup, its first task is to

5 In systems without an OS, where static loading is pre-
ferred, this information can be found in the linker script.
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Loader

x86 RISC-V

System call
tracer

Multi-version
execution Fault injector Plugin

Backbone

Back end

Rewriter

Fig. 2: SaBRe architecture.

load the plugin and perform its specific initialisation,

as detailed in §4.3. Then, the loader scans the memory

map of its own process, which includes only private and

libc segments, to avoid rewriting them later. Next, it

loads the user application (thereafter called client) into

the same process and scans the memory map again to

rewrite the executable segments of both the client bi-

nary and the dynamically linked libraries known to have

system calls.6 Lastly, the loader rewrites the stack for

the client and jumps to its entry point.

If the client is statically linked, then the entry point

is the binary itself. By the time the client receives con-

trol from the loader, all system calls have already been

rewritten since libraries (including libc) are incorpo-

rated.7 Otherwise, if the client is dynamically linked

(which is the default on Linux), the entry point is the

operating system’s dynamic loader (ld.so on Linux).

In this case, SaBRe’s loader rewrites ld.so to intercept

library loading and rewrite the libraries before any sys-

tem call has been issued. Thus, all libraries needed by

the program (including third-party plugins dynamically

loaded by the client using dlopen), are systematically

and transparently rewritten at load time, ensuring that

no system call can be missed. Besides, child processes

are also instrumented through the interception of the

clone system call (see Section 4.2).

SaBRe’s rewriter is built into the loader’s binary

and is called just once at load time. This ensures the

runtime overhead is only incurred by the trampoline

and the handler. First, the rewriter handles the virtual

dynamic shared object (vDSO). The vDSO is an op-

timised user-space implementation for some frequent

and safe system calls (e.g. gettimeofday). Its main

point is to avoid the overhead resulting from context

switches to kernel space. Rewriting the vDSO segment

is safe because each process has its own private copy, so

it only entails the same precautions as rewriting other

6 We perform this optimisation because most applications
perform system calls via a handful of system libraries, namely:
libc, librt, libpthread and libresolv.
7 In the current implementation, libraries dlopen-ed by

statically-linked binaries are not rewritten. However, this sit-
uation is extremely rare.

mappings. Second, the rewriter examines each library

known to contain system calls or selected functions. For

each such library, the rewriter searches the symbol ta-

ble (if present) for the names of functions to be inter-

cepted, and the corresponding prologues are detoured.

Then, the rewriter scans the .text section for system

calls using the ISA-specific disassembler (see §4.2). As
all system calls are always rewritten, it is up to the

plugin’s handler to treat some of them specially, e.g. by

filtering system call numbers.

In both cases, the patching mechanism works as fol-

lows. The rewriter scans the target memory range, first

to collect branch-target addresses (see §2.3), then to ac-

tually rewrite. The rewriter keeps an in-memory buffer

of the last few instructions disassembled so that they

can quickly be relocated whenever a system call is en-

countered. The rewriter searches for candidates for re-

location both backwards and forwards from the system

call. If not enough space can be made to accommodate

the detour (e.g. 5 bytes on x86 64), the target snippet

is replaced by a short illegal instruction (e.g. UD0 on

x86 64). At runtime, if triggered, the illegal instruction

results in a signal that is caught internally by SaBRe

so that the execution is then redirected to the plugin’s

system call handler.

SaBRe is designed to detour selected functions

named by the user. To this end, SaBRe relies on the

symbol table to map a function name into the address

of its first instruction. For this reason, if the client bi-

nary is stripped of its symbol table or when inlining is

used, function interception is not possible, except for

functions exported for dynamic linking.

4.2 Backends

For each intercepted instruction I, the disassembler pro-

vides SaBRe with the following information:

1. A pointer to the instruction following I, from which

SaBRe computes I’s size;

2. I’s addressing mode, in particular whether it is PC-

relative;

3. I’s side effects (e.g. the flags that it sets);

4. I’s opcode category: control flow, system call, etc.

SaBRe does not depend upon third-party libraries for

disassembling, due to portability and efficiency con-

cerns, but the built-in disassemblers are as sound as a

standard one. Currently, SaBRe is able to disassemble

two ISAs: x86 64 and RISC-V. The backend is also in

charge of all aspects that involve emitting assembly or

binary code. This includes: (1) the jump to the trampo-

line, (2) the trampoline itself, and (3) the pre-handlers.
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Pre-handlers are hand-written assembly functions

that are called from the trampoline. They perform the

following operations in turn: save machine state (reg-

isters and flags), call the plugin-specific handler, and

restore machine state when the plugin returns.

SaBRe also handles two system calls in a special

way: clone and rt sigreturn. Intercepting clone poses

a special challenge for SaBRe as after the system call

is issued by the kernel, the child thread is created with

a fresh stack and no information on how SaBRe can

return execution back to the caller of the clone system

call (usually the libc library). SaBRe solves this issue

by carrying the return address to the trampoline that

issued the system call. For all other system calls, this is

unnecessary as all information of the return addresses

are stored in the stack. So when a clone system call is

detected, SaBRe jumps to the explicit return address of

our trampoline, which in turn jumps back to the hard-

coded address of the rewritten system call.

The second system call that SaBRe needs to han-

dle in a special way is rt sigreturn. This system call

returns execution to an application provided pointer

which was given to the kernel from sigaction in order

to return from a signal handler. rt sigreturn never re-

turns and when it is issued execution is directly resumed

by the kernel to the application provided pointer. This

creates issues as SaBRe has tampered with the stack

while calling the trampolines and handlers. Thus SaBRe

restores back the stack pointer to the value it had prior

the jump to the trampoline, just before rt sigreturn

is issued.

4.2.1 x86 64 backend.

Because it has variable-length instructions, the x86 64

ISA is relatively compact. Detours in x86 64 require 5

bytes for an unconditional jump: 1 for the opcode, 4

for a 32-bit displacement that covers a ±2GiB range in

address space. Our empirical evidence shows that this

is sufficient to reach the trampoline.

Due to the complexity of the ISA, resorting to a full-

featured disassembler would be costly. However, as we

just need to be able to quickly traverse the code until

an instruction of interest is found, our implementation

does not need to fully disassemble the instructions be-

ing skipped.

4.2.2 RISC-V backend.

Reduced instruction sets may require several consecu-

tive instructions to perform a jump. In RISC-V, there

are two possibilities. First, if the trampoline is within a

20-bit displacement (i.e. 1MiB range), then a single 4-

byte instruction suffices. Otherwise, two 4-byte instruc-

tions can reach the required ±2GiB address range.

In the theoretical case where the trampoline can-

not be fitted within the required address range, SaBRe

aborts. We never encountered this case in practice.

4.3 Plugins

Plugins are compiled as shared objects that are dynam-

ically loaded at runtime via dlopen. SaBRe provides a

well-defined application programming interface (API)

to orchestrate the interaction with the backbone. This

API, designed with both flexibility and simplicity in

mind, only requires two functions to be implemented:

the initialisation, called once at load time; and the sys-

tem call handler, called at runtime whenever a system

call is intercepted. The plugin can also implement three

additional, optional types of functions. First, the plugin

can provide special handlers for vDSO calls (up to four

on x86 64). By default, SaBRe treats such calls as reg-

ular system calls, thus redirecting them to the system

call handler. Second, the plugin can intercept selected

functions, by associating handlers to function-library or

function-binary couples. In other words, the user can

decide to intercept a function belonging to either a li-

brary (in case of dynamic linking) or the binary itself

by filling a dedicated data structure with the name of

the function and the name of the library or binary. Fi-

nally, the plugin can provide a post-initialisation func-

tion that SaBRe calls after the client is loaded (as op-

posed to the initialisation function called before the
client is loaded). This may be used, for instance, to

have different system call handlers between load time

and runtime.

Besides bootstrapping the plugin, the initialisation

function must perform the following two tasks: (1) pro-

cess the plugin’s command-line arguments, and (2) reg-

ister the system-call and function handlers with SaBRe.

At interception time, the handler receives the system

call number and the arguments. It can therefore decide

to actually issue the system call surrounded by some

pre-/post-processing, for instance, or even not issue the

system call at all.

4.4 Limitations

The SaBRe tool has a number of limitations; we enu-

merate the most important ones here. (1) As discussed

in the introduction, SaBRe is not designed to han-

dle self-modifying code. (2) By default, only system
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calls, vDSO and function prologues are supported, al-

though SaBRe may easily be extended, as we did for the

multi-version execution plugin (see §5.3). (3) SaBRe re-

lies on the symbol table to map a function name into

the address of its first instruction, so if the client bi-

nary is stripped of its symbol table or when inlining is

used, function interception is not possible. (4) Libraries

loaded at runtime (via dlopen) by statically-linked bi-

naries are not seen by the rewriter. (5) In the case of

dynamic linking, stack unwinding information is lost

due to the simplified loading scheme of the client; this

will be fixed in a future version, at least for position

independent executables (PIE), by using dlmopen().

Also, due to the cohabitation of two executables in

the same process space, some usually trivial operations

may be unsafe. The main point of contention here is

libc’s memory allocation functions (malloc(), free(),

etc.). To maintain isolation and ensure the client’s be-

haviour is preserved, SaBRe’s loader has its own copy of

libc. However, because of the heap and the thread-local

storage being shared with the client’s libc, combined

with the frequent runtime switches between the client

and the plugin, the latter cannot rely on libc’s malloc.

The technical issue is that the FS register cannot be

shared between the client and the plugin or else mem-

ory operations will overlap, which will lead to mem-

ory corruption. Therefore, in the current implementa-

tion, it is recommended that the plugin should either

not make any calls to malloc functions (both directly

and indirectly) or provide its own implementation. We

currently have a functioning workaround that switches

the FS register on every jump between the client and

the plugin, but it introduces three extra system calls

as switching the FS register requires communication

with the kernel. We are working on a much more perfor-

mant alternative that will be implemented in the next

version of SaBRe.

5 Evaluation

We first present a set of experiments that demonstrate

the efficiency of SaBRe in terms of load-time and inter-

ception overhead (§5.1), and then show its versatility by

illustrating how it can be used to build various types of

plugins (§5.2–5.4).

5.1 Overhead

To benchmark SaBRe’s load-time and interception over-

head, we implemented an identity plugin that intercepts

all system calls and vDSO, and simply reissues them in

the handler. The identity plugin was tested both with-

out and with the trampoline-based optimisation.

Experimental setup. We tested the identity plu-

gin with four widely-used, high-performance network

servers.

Nginx [44] is a popular reverse-proxy server, often

used as an HTTP web server, load balancer, or cache.

Lighttpd [35] is a lightweight web server optimised for

high-performance environments. We benchmarked Ng-

inx 1.16.1 and Lighttpd 1.4.54 with wrk 4.1.0, a mod-

ern HTTP benchmarking tool [65]. Both Nginx and

Lighttpd servers are configured to serve a 2KiB file

containing random data, with protocol-level compres-

sion enabled. wrk is transferring this file for 3 minutes

using one thread and 40 open connections. We also use

a warm-up period of 5s.

Redis [50] and Memcached [41] are high-perfor-

mance, in-memory key-value data stores, used by many

well-known services. We benchmarked Redis 5.0.7 and

Memcached 1.5.20 with memtier 1.2.17, a Redis/Mem-

cached benchmarking tool [42]. Both servers are started

with an empty store. memtier issues the same number

of GET and SET operations with values of 100 bytes,

for 3 minutes using 3 threads and 30 open connections.

We also introduced a warm-up period of 5s.

We compiled all servers with default compiler op-

timisation options, i.e. -O2. All experiments were con-

ducted on a machine equipped with two 2.50 GHz Intel

Xeon E5-2450 v2 CPUs (8 physical cores, 16 logical

cores per CPU), with 188GiB of RAM, and running

64-bit Ubuntu 18.04.3 (kernel version 4.18.0-21-generic,

glibc version 2.27-3ubuntu1).

Rewriting statistics. We first report some statis-

tics about the rewriting process on x86 64. In glibc

version 2.28, SaBRe is able to rewrite all 404 SYSCALL

instructions by means of a detour. The size of the tram-

poline (without preamble and postamble) is 5 instruc-

tions for functions and 10 for system calls. The only in-

stance where a UD instruction and a signal are necessary

is for RDTSC (see §5.3). This happens in the run-time

initialisation of statically-linked binaries because both

the preamble and the postamble comprise PC-relative

instructions.

Load-time overhead. To benchmark SaBRe’s load-

time overhead, we introduced an exit(0) at the top

of the main function of the benchmarked applications,

and then used perf stat with chrt -f 99 and 2000

iterations to measure execution times. Results in Ta-

ble 2 show that SaBRe with trampolines introduces a

delay of less than 65ms during the loading phase of

an application, but the absolute time is still negligi-
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Table 2: Load-time overhead.

Load time (ms) Number of Binary
Native SIGILL Trampoline libraries size (MiB)

Lighttpd 0.6 27.3 64.4 8 2.6
Nginx 0.6 25.7 62.0 8 4.6

Memcached 0.4 27.1 63.8 5 0.9
Redis 0.8 27.2 64.7 7 8.4

ble even for short-running interactive applications, as

response times under 100ms are usually imperceptible

to users [9]. SaBRe under the SIGILL mode performed

better as it is much simpler to simply replace instruc-

tions with interrupts rather introducing trampolines.

SaBRe shows no significant performance difference be-

tween different binary sizes and number of libraries, as

scanning the assembly code in memory for targets is

very efficient. The performance is mainly dominated by

all the other technical details SaBRe needs to handle

(see §4).

Interception overhead. Saturating the applica-

tion’s CPU utilization is important to identify the high-

est possible interception overhead. Table 3 reports worst-

case overheads for native applications and the identity

plugin under both SIGILL and trampoline modes. All

tests were conducted at 100% utilization for the servers

for a 3-minute execution, and the table reports the time

and overhead per request. As can be seen, the run-

time overhead when solely using SIGILL interception

is high, varying from 13.20% for Nginx to 65.28% for

Redis. When the trampoline optimisation is used, the

overhead decreases substantially, at under 2.8% in all

cases, a two orders of magnitude improvement.

Table 4 shows various statistics for the 3-minute

benchmark execution when using trampolines. We re-

port the time spent in the kernel, as applications with

little kernel time should see little SaBRe overhead. In-

deed, the time spent in the kernel roughly correlated

with the overhead of SaBRe. We also report the total

number of requests as well as the number of syscalls,

vDSO call and RDTSC instructions. As expected, the

total overhead roughly correlates with the sum of sys-

tem calls and vDSO calls (the number of RDTSC in-

structions is insignificant in all cases).

We also explore the overhead at lower CPU utilisa-

tion levels. We do this only for Memcached and Redis,

as the memtier benchmarking tool allows us to control

the utilisation level (unlike wrk that we use for Lighttpd

and Nginx). The results are presented in Table 5 and

show that the overhead decreases substantially at util-

isation levels of less than 100%.

We next compare with two open-source systems that

provide functionality similar to SaBRe: syscall intercept

and LiteInst.

Comparison with syscall intercept. The library

syscall intercept8 is a run-time system call intercept-

ing library that provides a low-level interface for hook-

ing Linux system calls in user space. This is achieved

by hotpatching the machine code of the standard C li-

brary in the memory of a process. We compare SaBRe

to syscall intercept due to the similar goals of the two

projects.

syscall intercept comes with some important lim-

itations. First, syscall intercept does not support the

clone syscall and thus multithreaded applications are

out of scope. Indeed we observed instant crashes in

all of our server benchmarks except Lighttpd. Second,

syscall intercept only rewrites syscalls inside the libc

library and thus other syscalls might be ignored.

Lighttpd depends on libraries that have additional sys-

tem calls, for example librt. Syscalls in libraries out-

side of libc are common: In a quick scan on our Ubuntu

system we found that 20% of system libraries issue

syscalls.

In our Lighttpd benchmark we avoid triggering sys-

tem calls outside of libc in order to compare the two

systems fairly. syscall intercept showed a +7% overhead

compared to +0.9% of SaBRe. In terms of load time,

syscall intercept showed a 230.35ms overhead compared

to 64.4ms for SaBRe.

Inspection of the syscall intercept code base revealed

some contributing factors to the observed performance

overhead. The trampolines leading to the user-provided

interception routine perform additional unnecessary

work compared to SaBRe, such as saving and restoring

registers used by SIMD instructions (which we think

would be better done as part of the user-provided han-

dler when needed), as well as doing unavoidable addi-

tional checks related to syscall intercept’s implementa-

tion of logging. Furthermore, SaBRe employs a more

optimised trampoline system using only two jumps to

get to the user-provided system call handler as opposed

to syscall intercept which uses three or four jumps to

get to the user-provided system call handler.

8 https://github.com/pmem/syscall intercept
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Table 3: Overheads of trampolines vs SIGILL for a 3-minute benchmark execution using the identity plugin.

Native SIGILL Trampoline
Time (ms/req) Time (ms/req) Overhead Time (ms/req) Overhead

Lighttpd 1.14 1.85 62.3% 1.15 0.9%
Nginx 3.94 4.46 13.2% 3.95 0.3%

Memcached 0.89 1.38 55.0% 0.90 1.0%
Redis 0.72 1.19 65.3% 0.74 2.8%

Table 4: Various statistics for a 3-minute benchmark execution with trampolines.

Kernel Total Total Total Total
time requests syscalls vDSO RDTSC

Lighttpd 69.3% 6.2M 75.4M 187k 0
Nginx 21.7% 1.8M 11.1M 91k 1

Memcached 79.2% 18.0M 37.8M 541k 6
Redis 74.2% 21.6M 45.3M 45.3M 3

Table 5: Performance difference per CPU utilisation (trampolines, identity plugin).

CPU Throughput Normal Identity Runtime
utilisation (reqs/s) execution (ms/req) plugin (ms/req) overhead

100% 102,503 0.89 0.90 1.0%
Memcached 99% 99,394 0.58 0.59 0.5%

70% 51,625 0.57 0.57 0.4%
100% 120,107 0.72 0.74 2.8%

Redis 99% 110,324 0.54 0.55 1.3%
85% 47,901 0.52 0.52 0.3%

We also note that syscall intercept is initialized dur-

ing early runtime while SaBRe is initialized during load-

time and thus can intercept a larger set of functional-

ity e.g. the loader itself and libraries that come before

syscall intercept in .init and .preinit.

Comparison with LiteInst. LiteInst [11] is an
instruction-punning framework for x86-64. LiteInst also

suffers from some important limitations. First, it only

provides function-call interception and not syscall inter-

ception, even though this is likely a limitation of the im-

plementation. Second, like syscall intercept, it does not

scan for the target function calls outside of the target

binary, i.e. functionality inside external libraries is not

intercepted. And third, LiteInst only provides passive

probes that cannot skip over the intercepted syscalls

and functions as in the case of SaBRe.

Given these limitations, we couldn’t use our syscall

interception experiments involving network servers. In-

stead, we used a micro-benchmark that prints messages

through calling a local function 1000 times for a single

run. We measured the average performance overhead of

intercepting these function calls, using 1000 repetitions.

This synthetic micro-benchmark simulates a worst-case

scenario for both tools, as interceptions are very often

and execution time is dominated by the loader due to

the short life of the execution. In absolute numbers,

the native version has a load-time of 0.2ms with a total

execution time of 0.3ms.

LiteInst’s average total execution time was 7.7ms

with 7.5ms average load-time and 0.2ms of average in-

tercepting time for the local function call. SaBRe showed

an average total execution time of 52.4ms with 52.2ms

average load-time and 0.2ms of average intercepting

time. As expected both tools are significantly slower

than the native version. SaBRe has similar performance

characteristics for intercepting function calls, while the

larger load-time (6.9x slower) is expected due to the fact

that SaBRe scans both the binary and its libraries, and

rewrites all syscalls even if the user does not provide any

syscall handlers.

5.2 System call tracer

System calls are the main interface between user and

kernel spaces. For that reason, when it comes to un-

derstanding how a given application interacts with the

kernel, the ability to monitor the system calls it issues

is paramount. On Linux, the most prominent tool to

achieve this is strace.9 Although widely used, it suffers

from several shortcomings, all related to its underlying

technique: the ptrace system call. First, it requires the

existence of a separate process: the tracer. Second, in

9 https://strace.io/
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terms of performance, for each system call issued by

the traced process, ptrace raises two signals and trig-

gers four context switches. This is necessary to allow

the tracer to get access to both the arguments and the

return value of each system call. In addition, the tracer

needs to attach to and detach from the traced process,

but this only happens once and is therefore usually neg-

ligible in terms of overhead. Third, in terms of coverage,

system calls that go through vDSO—thus bypassing the

kernel—cannot be intercepted.10

Experimental setup. In order to improve on these

issues, we introduce sbrtrace, a system call tracer that

leverages load-time binary rewriting. We implemented

sbrtrace as a SaBRe plugin that mimics strace’s out-

put. We measured their respective overheads with both

the x86 64 and RISC-V backends, averaged over 10 runs.

To compare against dynamic binary instrumentation

frameworks, we also implemented an equivalent tool us-

ing Pin [38]. Pin does not support RISC-V, so we only

compared against it on the x86 64 benchmarks. We

also considered comparing against DynamoRIO, but

the available open-source DynamoRIO is tied to a very

old GLibc version on Linux systems and we could not

run it under our Ubuntu distribution.

Benchmarks for x86 64 were run natively under

Linux 5.4.0 on a machine powered by an Intel Core

i3-8100 CPU (4 cores running at 3.6GHz) and 32GiB

of DDR4 RAM running at 3200MHz. Due to lack of

hardware, RISC-V benchmarks were run on a QEMU

instance emulating a single-core machine with 2GiB of

DRAM propping up Linux 5.4.0.

The benchmark we used issues read and write sys-

tem calls as fast as possible using GNU dd. All the

values provided hereafter are means over ten measure-

ments.

Figure 3a shows the performance results for x86 64.

In this experiment, slightly more than one million sys-

tem calls were issued, equally split between reads and

writes. The native execution spends 10.04 s in system

calls and 14.40 s in user space, for a total of 24.45 s of

wall-clock time on average.

The slowest tracer was the one based on Pin. It took

49x longer to run than the native execution. This over-

head was largely due to Pin’s rewriting and lookup

of translated basic blocks which incurs a significant

run-time penalty. It also introduces many more system

calls which are required to allocate the additional ex-

ecutable pages that are necessary to host the rewrit-

ten code. Note however that the Pin tracer runs for

over 20 minutes, so the benchmark is sufficiently long-

10 vDSO can be disabled but, depending on the application,
this may incur a significant overhead.

running to warm up its internal code trace caches and

thus does not unduly penalise it compared to the other

approaches.

Due to the overhead introduced by ptrace, strace

spends 57x longer in the kernel, but only 17x longer

in user space. Overall strace introduces a 28x slow-

down. By contrast, sbrtrace introduces only a 2x slow-

down with 3x longer in the kernel and 1.3x longer in

user space. The cost of intercepting system calls and

formatting the output is responsible for the additional

time compared to native execution. The formatting cost

is exactly one write system call per original system

call.

Since release 5.3, strace can arrange to be noti-

fied by ptrace only when specific system calls are is-

sued using a seccomp sandbox [10]. This drastically re-

duces the overhead incurred by strace if it is used to

trace only rarely occurring system calls. For example,

we ran the dd benchmark, using strace with seccomp,

but only tracing the brk system call which is only called

three times. The results are now vastly different, strace

with seccomp runs in 25.60 s split between 13.48 s in

user space and 12.11 s in system calls, which is very

similar to the native execution and significantly faster

then strace which takes 469.88 s to complete the same

benchmark. Similarly, when sbrtrace is configured to

only trace the same brk system calls it is able to com-

plete the benchmark in 25.00 s, 15.37 s of which are

spent in user space and the remaining 9.62 s are spend

in system calls.

For RISC-V, the experiment involved a smaller

workload—10KiB instead of 25MiB—because the em-

ulation imposes a significant run-time overhead. In this

case, the total number of system calls issued was slightly

above 20 k. Still, the results are very similar to x86 64,

as depicted by Figure 3b. strace and sbrtrace are

respectively 70x and 5x slower than native.

Finally, we remind the reader that sbrtrace also

intercepts the vDSO calls, which is out of reach for

strace.

5.3 Multi-Version Execution

Multi-version execution (MVX) is a paradigm in which

multiple versions of a program are run concurrently,

with their execution synchronised and virtualised to ap-

pear as a single entity to the outside world. The tech-

nique has numerous applications in improving the se-

curity and reliability of software systems by combining

diversity and fault-tolerance [51,25,66,26].

Varan [26] proposed a novel decentralised architec-

ture for MVX systems that leverages a record-replay
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Fig. 3: Execution times of dd if=/dev/zero of=/dev/null bs=1 count=N.

strategy based on an in-memory ring buffer. Several

other recent MVX systems [47,30,66,58] incorporate

elements of this architecture. In Varan, a leader ver-

sion performs the actual system calls, vDSO and RDTSC

instructions, and writes their results into an in-memory

buffer, while multiple follower versions do not perform

the calls and RDTSC instructions and instead read their

results from the buffer.

We reimplemented Varan on top of SaBRe by split-

ting it in half: the part that intercepts system calls,

vDSO and RDTSC instructions is built on top of SaBRe,

while the actual MVX functionality of Varan resides in

a separate plugin.

Results. First, the separation of the monolithic

Varan into two resulted in an immediate increase in

code quality. This separation of concerns meant that the

Varan plugin did not have to worry about interception

and binary rewriting, and also meant that it could now

use third-party libraries such as libc, which was not

previously possible before due to the engineering im-

plications of its monolithic architecture. One particular

area of improvement was support for multi-threading.

While the original Varan supported multi-threaded ap-

plications, the support for this degraded over time, to

a point that Varan could not properly support mul-

tithreading anymore. Separating it made it easier to

debug and maintain this feature, and multi-threading

works again well with the new SaBRe-based implemen-

tation.

To keep leader and follower executions consistent,

we had to augment SaBRe to intercept RDTSC instruc-

tions. The RDTSC instruction counts the number of cy-

cles since last reset. We also had to intercept the
libc start main function to allow proper initialisa-

tion of the plugin.

In terms of performance, the differences between the

monolithic and SaBRe-based Varan are insignificant.
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Table 6: SaBRe MVX overhead results (in ms), compared to Varan.

Only leader Leader & Follower
Application SaBRe Varan Overhead SaBRe Varan Overhead

Lighttpd 1.78 1.79 -0.56% 1.92 1.93 -0.52%
Nginx 4.53 4.54 -0.22% 4.65 4.63 0.43%
Redis 0.91 0.91 0.32% 1.31 1.28 0.69%

Table 6 compares the performance of the monolithic

and SaBRe-based Varan using the same benchmarks as

in Section 5.1 (from which we removed Memcached, due

to the multi-threading issues of the monolithic Varan

discussed above). We show two scenarios commonly

used in multi-version execution, one in which only the

leader is run (e.g., as sometimes used in Mvedsua [48])

and one in which the leader and one follower are run (as

sometimes used in FreeDA [47]). In both scenarios, the

performance differences are insignificant, in the range

of -0.56%–0.69%.

5.4 Fault injector

We have built a simple fault injector plugin that aims to

test application resiliency in face of system-related error

conditions. Error-handling paths for conditions related

to starvation of resources in the system are not thor-

oughly tested. Therefore, we aim to check how well the

application responds to conditions such as running out

of memory or disk space. SaBRe lends itself perfectly to

the task, as it allows us to intercept and modify system

calls in an unobtrusive manner. Furthermore, this was

achieved with minimal programming effort: the plugin
is roughly 300 LOC long.

We employed a simple, configurable and extensible

scheme for simulating system call failures. Each sys-

tem call is assigned to families relevant to its func-

tionality. The categories are device management, file-

descriptor handling, network operations, process man-

agement, and memory management. These allowed us

to categorise 286 system calls out of 333. The remaining

system calls were either ones that are never allowed to

fail and were left untouched (22 of them), or those that

could not be neatly categorised and were thus put into

an uncategorised family (25 of them).

Users can configure the fault injector by assigning

failure probabilities to each family on the command

line. These probabilities are used by the system call

handler when it conducts a fault-injection campaign to

determine whether or not the current system call should

fail. In the event of a failure, an appropriate error code

is returned by the handler, and the failure is logged

to the relevant output stream. Beyond logging the fail-

ure, the occurrence number of the failing system call is

recorded to aid with debugging.

Experimental setup. To get a broad overview of

the effectiveness of the plugin, we applied it to the GNU

Coreutils [20], containing well-known utilities such as ls

and mkdir. Although we were able to use the test suite

bundled directly with GNU Coreutils, it relies heavily

on gdb scripts and function interception via the dy-

namic linker, all of which complicate the execution of

the utilities and made the results harder to analyze.

This is why we decided to drive the testing of the GNU

Coreutils with the test suite of Busybox [8], an imple-

mentation of these utilities targeting embedded devices.

Busybox’s test suite relies only on the utilities them-

selves and is thus easier to execute. We ran the test

suite with failures enabled for each family in isolation

with a 20% failure probability, and then we added a

final run with failures enabled for all families at a rate

of 10%.

Results. We found three distinct types of issues,

ranging from mild (cryptic error reporting messages)

to severe (crashes):

a) Cryptic error messages: In general, error report-

ing varied significantly in quality. Many messages were

cryptic, especially for a general user (e.g. “: Bad file

descriptor”), and in some cases both cryptic and mis-

leading, e.g. some applications claimed to be unable to

write output, when the failure logs indicated that only

reads had failed.

b) Lack of resiliency : Many system calls cannot be

interrupted whilst they are handled. If this happens,

EINTR is reported, and the client application is expected

to retry the system call. However, we often found that

many of the tested utilities immediately exited in this

situation and merely printed the integer value of EINTR

to standard error, instead of retrying the system call.

c) Crashes: In the face of unusual memory manage-

ment conditions, many of the tested utilities immedi-

ately crashed with a segmentation fault instead of exit-

ing gracefully. Notably, we found that most applications

could not survive a failure in mmap() when mapping in

libc pages during dynamic loading, which we think is ac-

ceptable. However, some applications crashed when the

first call to malloc() failed. Specifically, when malloc()
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is first called, the size of the uninitialised data segment

is expanded using the brk() system call. This is done

to provide malloc with an arena from which to allocate

memory to the user: the heap. When this particular in-

vocation of brk() fails, many application failed to detect

this and crashed immediately.

6 Related Work

In 2009, Google developed the secure computing mode

(seccomp) sandbox [21], as part of its Native Client

(NaCl) project [67]. To the best of our knowledge, sec-

comp sandbox is currently the only pre-existing load-

time selective binary rewriting implementation, although

the idea was first proposed back in 1997 [19]. We imple-

mented SaBRe by borrowing some code from NaCl, es-

pecially the x86 64 disassembler and some parts of the

system call rewriter. This was considerably reworked

to meet our needs and directly incorporated into the

SaBRe codebase. However, SaBRe differs significantly

from seccomp sandbox in several respects. First and

foremost, seccomp sandbox has no flexibility with re-

gard to how system calls are handled, and does not

provide an API. Second, the isolation required by sand-

boxing introduces a significant runtime penalty. Third,

seccomp sandbox specifically targets x86 64 and has no

modularity. More broadly, SaBRe is a rewriting system

suitable for various applications, while seccomp sand-

box is solely aimed at sandboxing.

The following paragraphs offer an overview of

projects that relate in some way to SaBRe. For a broader

and more comprehensive review of the state of the art

in binary rewriting, the reader is referred to Wenzl et

al. [63].

As regards static binary rewriting, i.e. modifying a

binary file ahead of execution, most techniques fall into

one of three categories: trampoline, insertion or lifting

(see §2.1). SaBRe belongs to the former, together with

Detours [27], Dyninst (static) [5,12], BIRD [43], PE-

BIL [32], STIR [62], Multiverse [4] and E9Patch [17].

Detours only works at function level and thus cannot

intercept individual instructions. BIRD partly relies on

dynamic speculative disassembly, which incurs a signif-

icant runtime overhead. Both of them are specifically

aimed at Windows binaries. PEBIL duplicates entire

functions, even if just a couple of instructions are in-

strumented. STIR goes further and replicates whole

segments. Multiverse leverages an expensive brute-force

approach to disassemble every byte offset in the text

section. Most importantly, none of them can rewrite the

shared libraries needed by the program without addi-

tional effort from the user. Since all system calls usually

lie in such libraries (particularly libc), this makes all

of those tools unfit to the task. By contrast, Dyninst

is able to rewrite libraries transparently but it suffers

from the problems of static approaches, as discussed in

§A.2. In fact, the programmer’s guide states this limita-

tion, alerting the developer that Dyninst finds targets

of indirect jumps only by matching binary code against

known patterns generated by popular compilers [12].

SaBRe, which works after the code is loaded and all

addresses are resolved, can detect problematic indirect

control-flow transfers by padding detours with invalid

instructions. Diablo [57] works at link time but requires

a patched toolchain and does not support dynamically-

linked binaries, which greatly limits its usability on

modern Linux systems. E9Patch improves on instruc-

tion punning (see below) by introducing instruction evic-

tion and physical page grouping, all three techniques

being agnostic to control flow. LLBT [54] is a static

binary translation tool for ARM that lifts code into

LLVM intermediate representation before retargeting a

different ISA. As mentioned earlier, this is inefficient

for binaries produced by other compilers. Additional

recent work [56,60,61,16,64] has seen the emergence of

compiler-agnostic variations on binary lifting. But these

techniques rely on additional assumptions (typically the

availability of relocation data) or are restricted to some

binary forms (e.g. 64-bit PIC [16]). Furthermore, the

static analysis involved is still heavyweight and it is

not clear how efficiently a large number of libraries can

be handled by such tools.

As regards dynamic binary rewriting, i.e. modify-

ing instructions at runtime, the most prominent tools

include: SecondWrite [18], Dyninst (dynamic) [7], Dy-

namoRIO [6], Pin [38], MAMBO [22], ADORE [37] and

LiteInst [11]. SecondWrite performs rewriting on LLVM

bitcode, which is costly to do dynamically due to the bi-

nary lifting process. Dyninst relies on a separate process

and ptrace11 to achieve this at runtime, which incurs

a high overhead in both space and time. DynamoRIO

and Pin have been reported to impose runtime penal-

ties of at least 20% and 54% respectively [39], just to

maintain supervised execution, without any additional

instrumentation, while SaBRe’s overhead on the iden-

tity plugin is less than 3% (see §5.1). Most dynamic

rewriters have to pay similar costs, due to their com-

mon underlying technique: code caching. Thus, instead

of being rewritten in place, the code is copied to a sep-

arate scratch space—the cache—where all indirect con-

trol flows have to be fixed up. Obviously, this also has

a significant impact on memory and energy consump-

tion. MAMBO, which specifically targets ARM, has a

11 See §5.2 for why ptrace is costly. Note that unlike strace,
Dyninst only relies on ptrace for rewriting, not for intercep-
tion.
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built-in mechanism to intercept system calls; but, al-

though it has lower overhead than other dynamic bi-

nary modification tools, it still suffers from the cost

of maintaining a code cache. SaBRe boasts a much

lighter footprint on resources than all aforementioned

techniques, which makes it the only practical option for

binary rewriting on small embedded systems. The only

two exceptions here are ADORE and LiteInst. Rather

than code caching, the ADORE system leverages tram-

polines to redirect the execution of small portions of

code at runtime, with very low overhead. However, it is

restricted to a very specific application—runtime data

cache prefetching—and is optimised accordingly. Sim-

ilarly to SaBRe, LiteInst relies on trampolines, but it

pairs this common technique with instruction punning,

which allows it to work also with indirect jumps and

short instructions We have directly compared with Lite-

Inst in Section 5.1.

Besides, although all the aforementioned projects

operate in user space, extended Berkeley Packet Fil-

tering (eBPF) can be used to intercept system calls in

the kernel. However, as eBPF programs are actually

running inside the kernel, there are security implica-

tions. Therefore, eBPF programs have to be statically

analysable for correctness by the eBPF verifier, which

means expressiveness is limited due to the language not

being Turing-complete. In particular, loops are forbid-

den, pointer arithmetic is restricted, accessible memory

has fixed size and the instruction count is bounded.12

In addition, as vDSO calls do not go through the ker-

nel, they cannot be captured by eBPF. vltrace13 is

a system call tracer that relies on eBPF. It has sev-

eral system requirements and dependencies, including

a recent, suitably configured kernel and third-party li-

braries. In contrast, SaBRe is self-contained and works

with any kernel. Besides, the Linux perf-trace14 tool

leverages kernel probes to monitor system calls. But it

similarly requires a suitably configured kernel and must

be run with superuser privileges.

Finally, a widely used technique to intercept func-

tion calls is library interposition (see e.g. Xifer [13]).15

The idea is to define in a separate library one or several

functions with the same name as existing ones and bind

them at load time so that they are called instead of the

original ones. This works well for named functions with

the same restrictions as with SaBRe—symbols have

12 Unfortunately, despite all these constraints, eBPF is not
exempt from vulnerabilities: CVE-2017-16995 allowed to by-
pass the eBPF verifier so as to get unlimited read/write access
within the kernel.
13 https://github.com/pmem/vltrace
14 https://perf.wiki.kernel.org/
15 On Linux, this is usually achieved by setting the
LD PRELOAD environment variable.

to be exported—but with additional constraints. First,

only function calls that go through the procedure link-

age table (PLT) are interposable. Second, library in-

terposition will not work with statically-linked binaries

since it relies on the dynamic loader’s doing the final

link. Third, LD PRELOAD cannot be used with setuid

programs for security reasons.

7 Conclusion

In this paper, we have introduced SaBRe, a lightweight

load-time system for selective binary rewriting. SaBRe

enables adding, removing and modifying instructions in

process memory, both in the program itself and in li-

braries. We described the main theoretical challenges

for accurate rewriting, including those for disassem-

bly with a linear-sweep scheme, and rewriting with a

trampoline-based approach. On the practical side, we

used the modular plugin architecture of SaBRe and its

flexible API to build backends for x86 64 and RISC-V,

and plugins for system call tracing, multi-version exe-

cution and fault injection, which have been evaluated

on real applications. The overhead of bare intercep-

tion, without any added instrumentation, ranges be-

tween 0.3% and 2.8%. The MVX plugin, which is the

most complex, performs on par with the state-of-the-

art monolithic Varan system. By targeting the RISC-V

architecture, not relying on third-party libraries and

keeping the main binary below 50KiB, SaBRe is also a

better fit for embedded systems under strong memory

constraints than any other solution in the literature.

Finally, we remind the reader that SaBRe is open

source and can be found at:

https://github.com/srg-imperial/sabre.
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40. Matz, M., Hubička, J., Jaeger, A., Mitchell, M., Lu,
H., Girkar, M.: System V Application Binary Interface
AMD64 Architecture Processor Supplement (With LP64
and ILP32 Programming Models) (2018)

41. Memcached. http://memcached.org/

42. memtier benchmark. https://github.com/RedisLabs/

memtier_benchmark



18 Arras et al.

43. Nanda, S., Li, W., Lam, L.C., cker Chiueh, T.: BIRD: Bi-
nary interpretation using runtime disassembly. In: Proc.
of the 4th International Symposium on Code Generation
and Optimization (CGO’06) (2006)

44. Nginx. https://nginx.org/

45. Nylander, E.: Improved code obfuscation through auto-
matic construction of hidden execution paths. Master’s
thesis, Lund University (2014)

46. O’sullivan, P., Anand, K., Kotha, A., Smithson, M.,
Barua, R., Keromytis, A.D.: Retrofitting security in
COTS software with binary rewriting. In: Proc. of
the IFIP International Information Security Conference
(SEC’11) (2011)

47. Pina, L., Andronidis, A., Cadar, C.: FreeDA: Incompat-
ible stock dynamic analyses in production. In: Proc. of
the 2018 ACM International Conference on Computing
Frontiers (CF’18) (2018)

48. Pina, L., Andronidis, A., Hicks, M., Cadar, C.: Mvedsua:
Higher availability dynamic software updates via multi-
version execution. In: Proc. of the 24th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’19) (2019)

49. Prasad, M., Chiueh, T.: A binary rewriting defense
against stack based buffer overflow attacks. In: Proc.
of the 2003 USENIX Annual Technical Conference
(USENIX ATC’03) (2003)

50. Redis. https://redis.io/

51. Salamat, B., Jackson, T., Gal, A., Franz, M.: Orchestra:
intrusion detection using parallel execution and moni-
toring of program variants in user-space. In: Proc. of
the 4th European Conference on Computer Systems (Eu-
roSys’09) (2009)

52. Schwarz, B., Debray, S., Andrews, G.: Disassembly of ex-
ecutable code revisited. In: Proc. of the 9th Working
Conference on Reverse Engineering (WCRE’02) (2013)

53. Schwarz, B., Debray, S., Andrews, G., Legendre, M.: Plto:
A link-time optimizer for the Intel IA-32 architecture.
In: Proc. of the 2001 Workshop on Binary Translation
(WBT-2001) (2001)

54. Shen, B.Y., Hsu, W.C., Yang, W.: A retargetable static
binary translator for the ARM architecture. ACM Trans-
action on Architecture and Code Optimization (TACO)
11(2), 18 (2014)

55. Smith, J., Nair, R.: Virtual machines: versatile platforms
for systems and processes. Elsevier (2005)

56. Smithson, M., ElWazeer, K., Anand, K., Kotha, A.,
Barua, R.: Static binary rewriting without supplemental
information: Overcoming the tradeoff between coverage
and correctness. In: Proc. of the 20th Working Confer-
ence on Reverse Engineering (WCRE’13) (2013)

57. Van Put, L., Chanet, D., De Bus, B., De Sutter, B.,
De Bosschere, K.: Diablo: a reliable, retargetable and ex-
tensible link-time rewriting framework. In: Proc. of the
5th IEEE International Symposium on Signal Processing
and Information Technology (ISSPIT’05) (2005)

58. Volckaert, S., Coppens, B., Voulimeneas, A., Homescu,
A., Larsen, P., Sutter, B.D., Franz, M.: Secure and
efficient application monitoring and replication. In:
Proc. of the 2016 USENIX Annual Technical Conference
(USENIX ATC’16) (2016)

59. Wall, D.W.: Global register allocation at link time. In:
Proc. of the 1986 SIGPLAN Symposium on Compiler
Construction (SIGPLAN’86) (1986)

60. Wang, R., Shoshitaishvili, Y., Bianchi, A., Machiry, A.,
Grosen, J., Grosen, P., Kruegel, C., Vigna, G.: Ramblr:
Making Reassembly Great Again. In: Proc. of the 24th

Network and Distributed System Security Symposium
(NDSS’17) (2017)

61. Wang, S., Wang, P., Wu, D.: Uroboros: Instrumenting
stripped binaries with static reassembling. In: Proc.
of the 23rd IEEE International Conference on Software
Analysis, Evolution, and Reengineering (SANER’16)
(2016)

62. Wartell, R., Mohan, V., Hamlen, K.W., Lin, Z.: Binary
stirring: Self-randomizing instruction addresses of legacy
x86 binary code. In: Proc. of the 19th ACM Conference
on Computer and Communications Security (CCS’12)
(2012)

63. Wenzl, M., Merzdovnik, G., Ullrich, J., Weippl, E.: From
hack to elaborate technique—a survey on binary rewrit-
ing. ACM Comput. Surv. 52(3) (2019)

64. Williams-King, D., Kobayashi, H., Williams-King, K.,
Patterson, G., Spano, F., Wu, Y.J., Yang, J., Kemerlis,
V.P.: Egalito: Layout-agnostic binary recompilation. In:
Proc. of the 25th International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems (ASPLOS’20) (2020)

65. wrk. https://github.com/wg/wrk

66. Xu, M., Lu, K., Kim, T., Lee, W.: Bunshin: Composit-
ing security mechanisms through diversification. In:
Proc. of the 2017 USENIX Annual Technical Conference
(USENIX ATC’17) (2017)

67. Yee, B., Sehr, D., Dardyk, G., Chen, J.B., Muth, R., Or-
mandy, T., Okasaka, S., Narula, N., Fullagar, N.: Na-
tive Client: A sandbox for portable, untrusted x86 native
code. In: Proc. of the IEEE Symposium on Security and
Privacy (IEEE S&P’09) (2009)

68. Zhao, L., Li, G., Sutter, B.D., Regehr, J.: Armor: Fully
verified software fault isolation. In: Proc. of the 11th
International Conference on Embedded Software (EM-
SOFT’11) (2011)

A Appendix

We start by providing some formal definitions (§A.1), then
assess the main challenges involved (§A.2) and finally demon-
strate the propositions underpinning our approach (§A.3).

A.1 Definitions

Definition 1 An instruction word is a finite sequence of exe-
cutable bytes. A data word is a finite sequence of non-executable
bytes, which may include padding or junk bytes.

Definition 2 A program is a finite sequence of both instruc-
tion and data words. The code of a program is the subsequence
derived by deleting data words.

Definition 3 A code snippet refers to a sequence of one or
several instructions.

We model the memory M as a one-dimensional space.
Each memory object is characterised by its start address and its
size, which determine a connected (or contiguous) subset of
M . Let A(o) and S(o) be functions that map an object o into
its start address and size, respectively. The distance between
two objects is the difference between their start addresses.

Definition 4 A segment is a connected (or contiguous) subset
of the memory space M .
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Each segment has a set of permissions attached to it, usu-
ally a combination of Read, Write and eXecute. All instruc-
tions must be mapped to executable segments.

Definition 5 The code coverage is the proportion of instruc-
tions that the disassembler is able to decode. Under-coverage

occurs when some instructions are missed and thus the pro-
gram is not fully disassembled. Over-coverage occurs when
data words are interpreted as instructions. When neither oc-
curs, we have adequate coverage.

Note that both types of inadequate coverage can manifest
simultaneously, i.e. we could have both under-coverage (some
instructions are missed) and over-coverage (some data words
are misinterpreted as instructions). Also, note that adequate
coverage is not sufficient to guarantee the accuracy of the
disassembly, as immutability of the code is also required (see
Proposition 2).

A.2 Disassembly challenges

The main challenges of disassembling are:

Code discovery. One of the core challenges of disassem-
blers is to distinguish between data and instruction words.
This major theoretical challenge is known since 1978 [24] and
is now referred to as the content-classification or code-discovery
problem [18,55] or simply code discovery. It is proven to be re-
ducible to the halting problem [24]. The fundamental reason
behind the undecidability is that for a snippet to be proven
as code it has to be reachable through some execution path.
However, some paths may involve indirect jumps whose target
addresses can not be known before execution.

On the practical side though, there are solutions to make
the distinction between code and data obvious. One of them
is to embed some metadata into the memory representation.
For instance, one possible convention would be for instruction
and data words to have their first bit set to 0 and 1 respec-
tively. This scheme has several major drawbacks, including
the waste of encoding space, which is why no commercial ISA
uses it. Another, more realistic, design is segregation, either
physical or logical. Physical segregation is embodied by Har-
vard architectures [23, p. L-4] in which code and data have
their own separate memories. However, most real-world com-
puters (aside from embedded devices)16 have taken a hybrid
Harvard/Von Neumann approach characterised by a unified
memory, mixing both instructions and data. For Von Neu-
mann architectures, logical segregation can be used instead.
This can be achieved by having the kernel enforce some par-
titioning of the address space exposed to the user. Another
option is for the executable file format to mandate code and
data to be stored in separate segments (as discussed later). In
either case, segregation requires cooperation from the com-
piler as it is the only one to know the original program’s
semantics.

If the disassembler misinterprets data as code, there are
two possible outcomes: (1) the decoded bytes happen to rep-
resent a valid instruction, and (2) there exists no such in-
struction encoding.

16 In the embedded world, the situation is slightly different.
On the one hand, most microprocessors rely on a pure Von
Neumann architecture with either no or a single cache and
one bus because of its simpler design and reduced footprint.
On the other hand, microcontrollers stick to separate flash
memory for code and RAM for data.

Case (1) results in over-coverage. If the considered ar-
chitecture has fixed-length instructions (e.g. MIPS), this is
benign. However, if instructions have variable length (e.g.
x86 64) then an additional hazard is to derail, i.e. to desyn-
chronise from the instruction stream. In this situation, the
disassembler derives erroneous start addresses for subsequent
legitimate instructions and fails to decode them properly.
This might happen because such ISAs do not impose any
alignment in order to optimise code density.

In case (2) the disassembler skips invalid bytes until it
synchronises back to the instruction stream. In the process
of coming back on track, the disassembler might temporar-
ily reach a fake execution path, i.e. a sequence of bytes that
happen to encode legal instructions. This translates into both
under-coverage (since legitimate instructions are missed) and
over-coverage (as extra instructions in the fake path are dis-
assembled). However, prior work shows it is rare to miss more
than three genuine instructions on x86 64 [36].

Instruction overlapping and embedding. On ISAs with
variable-length instructions, an additional issue is the pos-
sibility of having a given snippet encode several execution
paths [45]. This is possible if there is some amount of overlap
between neighbouring instructions. More formally, there may
exist two instruction sequences i and j such that A(i) < A(j)
but A(i) + S(i) > A(j), i.e. the last few bytes of i are also
the first bytes of j. In this case, a disassembler might only
discover the main execution path, namely the one comprising
i. On the other hand, j may only be reached through a jump
and thus belongs to the hidden execution path.

A variation on overlapping is instruction embedding [33]
or aliasing, wherein A(i) < A(j) but A(i)+S(i) ≥ A(j)+S(j)
i.e. some bytes of i happen to encode j entirely. While gen-
eral overlap across several instructions is only used in obfus-
cated code, some rare examples of embedding can be found
in glibc [1], which is the most widespread implementation of
the C standard and run-time library among Linux distribu-
tions. The purpose of the glibc embedding is to prepend an
optional lock to a regular instruction, so that this lock can
be skipped through a conditional jump.

A.3 Proofs

Proposition 1 Sufficient conditions for adequate coverage:

1. Within a segment, instructions are tessellated, i.e. there is

neither gap nor overlap between them.
2. The start address and size of executable segments are known.

Proof Let us denote by Ia the actual set of instructions in
the program and by Id the set of instructions found by the
disassembler. We want to prove that Id = Ia, i.e both Id ⊂ Ia
and Id ⊃ Ia.

(⊂) Instructions are tessellated; in particular, there is no
gap between them. This ensures that nothing other than code
can be encountered in executable segments. Tessellation also
guarantees the absence of overlap between instructions. This
in turn ensures that no extra instruction can be encountered
by derailing into a fake execution path (see Section A.2).
Therefore, Id shall be a subset of Ia.

(⊃) The start address and size of executable segments are
known. Linear sweep guarantees that no instruction on the
main execution path in executable segments can be missed.
Besides, instructions are tessellated; in particular, there is no
overlap between them. Thus there cannot exist hidden execu-
tion paths. Moreover, all instructions need to lie in executable
segments. Therefore, Id is necessarily a superset of Ia.
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Adequate coverage is not enough to guarantee the ac-
curacy of the disassembly, i.e. its full correctness across the
execution.

Proposition 2 Sufficient conditions for accurate disassembly:

1. adequate coverage

2. code is immutable

Proof Adequate coverage means that all instructions are ap-
propriately decoded at the time they are read by the disas-
sembler. Then, under this assumption, the only way by which
the disassembly can be inaccurate is if the code changes af-
ter it has been disassembled. Code immutability therefore
guarantees that any program adequately covered by the dis-
assembler will result into an accurate disassembly ever after.


